什么是最短通路问题: In a shortest-paths problem,we are given a weighted,directed graph G=(V,E),with weight function w:ER mapping edges to real-valued weights.The weight w(p)of path p=(vo.v1...v)is the sum of the weights of its constituent edges: 问题1: k w(p)=w(-1,). 输入是什么?输出是 i=1 什么? We define the shortest-path weight 8(u,v)from u to v by min()ithere isa pathfrom o otherwise A shortest path from vertex u to vertex v is then defined as any path p with weight w(p)=8u,)
什么是最短通路问题?
问题2 单源最短略问题的解必定是一棵树? A shortest-paths tree rooted at s is a directed subgraph G'=(V',E), where V'C V and E'C E,such that 1.V'is the set of vertices reachable from s in G, 2.G'forms a rooted tree with root s,and 3.for all vV,the unique simple path froms to v in G'is a shortest path froms to v in G. 由.T决定的 Vπ={v∈V:w.π≠NTL}U{s}· 最短路径树: E元={v.π,v)∈E:v∈Vπ-{s}
由.π决定的 最短路径树:
单源最短路问题具有最佳子结构性 Lemma 24.1 (Subpaths of shortest paths are shortest paths) Given a weighted,directed graph G=(V.E)with weight function w:E->R, let p =(vo,v1,....vk)be a shortest path from vertex vo to vertex vk and,for any i and j such that0≤i≤j≤k,let Pij=(i,vi+l,,vi)be the subpath of p from vertex vi to vertex vj.Then,Pij is a shortest path from vi to vj. Proof If we decompose path p into vv,then we have that w(p)=w(Poi)+w(Pij)+w(pik).Now,assume that there is a path p;from vi to with weight w(p(.Then,is a path from v to vk whose weight w(poi)+w(p)+w(pjk)is less than w(p),which contradicts the assumption that p is a shortest path from vo to vk
单源最短路问题具有最佳子结构性
最优子结构: 动态规划必定可行,是否可以“贪心”? 问题3: 简单的greedy策略不能正确解决最短通路问题! 为什么?
s 2 6 1 7 v 问题3: 简单的greedy策略不能正确解决最短通路问题! 为什么? 最优子结构: 动态规划必定可行,是否可以“贪心”?
问题5: 在本章中介绍的算法基本思路 是一样的,那是什么? Bellman-Ford算法、DAG算法、Dijkstra算法 松弛+有序的松弛
Bellman-Ford算法、DAG算法、Dijkstra算法 松弛+有序的松弛
从这个案例中,我们能够得到的启发: 令u.d是源点s到节点u的最短距离的预测,初始定义u.d=∞. u.d是&(s,u的上界,但不紧致 若节点u有一条有向边射入节点v,且此时u.d和v.d分别为5和9 v.d是否可以被紧致到一个更小的上界,比如7?
从这个案例中,我们能够得到的启发: 令u.d是源点s到节点u的最短距离的预测,初始定义u.d=∞. 若节点u有一条有向边射入节点v,且此时u.d和v.d分别为5和9 v.d是否可以被紧致到一个更小的上界,比如7? u.d是&(s,u)的上界,但不紧致