ICAT Human and Automation Integration Considerations for UAV Systems Prof, r john hansman Roland weibel MIT International Center for air transportation Department of Aeronautics& Astronautics
MIT ICAT Human and Automation Integration Considerations for UAV Systems Prof. R. John Hansman Roland Weibel MIT International Center for Air Transportation Department of Aeronautics & Astronautics
Possible commercial uav ICAT Applications -Motivation Remote Sensing 日 Meteorology 口 Scientific research a Aerial Photography/ Mapping 口 Pipeline Spotting 日 Disaster Monitoring 日 Agriculture Surveillance 口 Border patrol a Homeland Security/ Law Enforcement 日 Traffic Monitoring 口 Search and rescue Data Delivery 日 Communications Relay 口 Multimedia broadcast Cargo transport
MIT ICAT Possible Commercial UAV Applications - Motivation y Remote Sensing Meteorology Scientific Research Aerial Photography/ Mapping Pipeline Spotting Disaster Monitoring Agriculture y Surveillance Border Patrol Homeland Security/ Law Enforcement Traffic Monitoring Search and Rescue y Data Delivery Communications Relay Multimedia Broadcast y Cargo Transport
Possible Military UAV ICAT Missions- Motivation Intelligence 口 Reconnaissance 日 Target Monitoring 口 Forward air control 口E| ectronic Warfare a Search and rescue a Battle Damage Assessment BDA) · ifensive Operation a Suppression of Enemy Air Defenses (SEAD 日 Close Air Support 日 Deep Strike · Cargo transport
MIT ICAT Possible Military UAV Missions - Motivation y Intelligence Reconnaissance Target Monitoring Forward Air Control Electronic Warfare Search and Rescue Battle Damage Assessment (BDA) y Offensive Operation Suppression of Enemy Air Defenses (SEAD) Close Air Support Deep Strike y Cargo Transport
MIT y Current Unmanned Aerial Vehicles ICAT Aerovironment black Sig Kadet l Rc Widow-2.1202. Boeing/ Insitu Scaneagle-33 Ib Gen. Atomics-Predator B-7000 lb Trainer-5 lb BAE Systems NOAA Microstar-30 oz LAI Scout-351 lb Weather eing X-45A UCAV-12, 195 Ib(est) Balloon 2-6|b Allied Aero Northrop-Grumman LADF-3. 8 lb Global Hawk 25.600 lb Bell Eagle Eye-2, 250 Ib 0 1.000 10,000 100,000 UAV Weight Micro Short Range Tactical High Alt/ UCAV Large range of UAv types as users of NAS propulsion configuration capabilities, etc
MIT ICAT Current Unmanned Aerial Vehicles Aerovironment Black Widow – 2.12 oz. BAE Systems Microstar – 3.0 oz. Sig Kadet II RC Trainer – 5 lb Aerovironment Pointer – 9.6 lb Boeing/ Insitu Scaneagle – 33 lb IAI Scout – 351 lb Boeing X-45A UCAV – 12,195 lb (est) Micro Mini Short Range Tactical High Alt / UCAV Bell Eagle Eye – 2,250 lb Allied Aero. LADF – 3.8 lb NOAA Weather Balloon 2-6 lb Gen. Atomics – Predator B – 7,000 lb Northrop-Grumman Global Hawk 25,600 lb UAV Weight (lb) 0 1 10 100 1,000 10,000 100,000 **Mass Range** Large range of UAV types as users of NAS -propulsion, configuration, capabilities, etc
ICAT Ceiling 70000 △ Electric 工 米 600001Pson HL600 O TurbopropMALE 50000 Turboshaft■HALE s Turbofan EE 40000 class A 30000 8 20000 日■要 18.000 ft 10000 Classes B-E.G 10 100 1000 10000 100000 Max To Weight (Ib)
MIT ICAT Ceiling Shed Mk3 Fox Gnat Gnat 2 Predator B ProwlerII Heron Seascan Robocopter Hunter Dragon Eye Camcopter Hermes 1500 Mini-V Survey-Copter 1 Shadow 200 Helios Pointer Azimut Biodrone Perseus Phoenix Eagle Eye Sheddon Eagle 2 Luna Altus II Predator Searcher Scout Spectre Solar Bird Raptor Global Hawk Fire Scout Sender RMAX 0 10000 20000 30000 40000 50000 60000 70000 1 10 100 1000 10000 100000 Max TO Weight (lb) Ceiling (ft) Electric Piston Turbocharged Turboprop Turboshaft Turbofan + * Micro Mini Tactical MALE HALE Rotary Legend Electric Piston Turbocharged Turboprop Turboshaft Turbofan + * Micro Mini Tactical MALE HALE Rotary Legend FL 600 18,000 ft Class A Class G Classes B-E, G
ICAT Takeoff method Hand-launched: Aerovironment pointer Rocket-Assisted: Hunter UAy Rail-Launched: Sperwar Tilt-Rotor Eagle eye Runway takeoff: X-45 UCAV
MIT ICAT Takeoff Method Hand-launched: Aerovironment Pointer Rocket-Assisted: Hunter UAV Rail-Launched: Sperwar Tilt-Rotor: Eagle Eye Runway Takeoff: X-45 UCAV
Basic Supervisory Control ICAT Architecture Controlled Process Human Display Human Int Task Int Icle Operator Controls Computer Computer Sensors Communications Channel Adapted from Sheridan, Humans and Automation
MIT ICAT Basic Supervisory Control Architecture Human Operator Displays Controls Human Int. Computer Communications Channel Task Int. Computer Vehicle Sensors Controlled Process Adapted from Sheridan, Humans and Automation
UAV Operation Basic ICAT Functional Architecture surveillance Air Traffic Control Othel A/c commands reporting displays i operations feedback controlle operato (vehicle) vehicle (customer) (field commander) (sensors) controls sensors Environment (A)
MIT ICAT UAV Operation Basic Functional Architecture UAV vehicle Environment (A) controls operator (vehicle) operator (sensors) commands Payload displays feedback transmission sensors sensors sensors Air Traffic Control surveillance reporting direct control commands reporting/ negotiation operations controller (dispatch) (customer) (field commander) displays Other A/C surveillance
ICAT Pointer uav Used for Short-Range Surveillance 口 Battlefield commanders 口 Law enforcement Vehicle capabilities 口 Manual control 日 Autopilot a Sensor Integration and Display a Loss of link return to base Bandwidth Requirements a Transmission of vehicle Commands a Receipt of Sensor Intelligence, Vehicle State
MIT ICAT Pointer UAV y Used for Short-Range Surveillance Battlefield commanders Law Enforcement y Vehicle Capabilities Manual Control Autopilot Sensor Integration and Display Loss of Link Return to Base y Bandwidth Requirements Transmission of Vehicle Commands Receipt of Sensor Intelligence, Vehicle State
ICAT Pointer UAV Tasking Control Commander I experience, tasking go als 7g --------“---- tasking/interpretation i Plan actions Plan Actions sensor operator Implement Aircraft control Monitor Interpret/Camera ilot grot station s Recording sensor camera Lost link auto- ntegration guidance Procedure FMC pI vehicle control Camera
MIT ICAT Pointer UAV Tasking & Control pilot sensor operator speech ground station vehicle CDU MCP controls control surfaces UAV displays displays manual control state commands traj commands FMC auto- pilot Lost Link Procedure Aircraft Control Plan Actions Monitor experience, training tasking/interpretation Plan Actions MonitorInterpret Control Camera Implement tasking Commander Interpret tasking experience, goals training Recording camera guidance sensor integration goals Camera sensors