方程y"+py+q=e[P(x) COSO+Pn(x) )sina]的特解形式: 应用欧拉公式可得 e/r[Pi(x)coax+P,()sina sexx(rar)eioxte -i@x 10x -+P( e -Iox 2 =[P(x)-i2(x)+o)x+1[P(x)+i2(x)e(2m)x P(x)e(tiox+P(x)e(-1@)x 其中P(x)=(P-P),P(x)=5(P+P),而m=mx,n 上页 返回
上页 返回 下页 方程y+py+qy=e x [Pl (x)cosx+Pn (x)sinx]的特解形式 应用欧拉公式可得 e x [Pl (x)cosx+Pn (x)sinx] ] 2 ( ) 2 [ ( ) i e e P x e e e P x i x i x n i x i x l x − − − + + = i x l n i x l n P x iP x e P x iP x e ( ) ( ) [ ( ) ( )] 2 1 [ ( ) ( )] 2 1 + − = − + + i x i x P x e P x e ( ) ( ) ( ) ( ) + − = + 其中 ( ) 2 1 P(x) P Pi = l − n ( ) 2 1 P(x) P Pi = l + n 而 m=max{l n}
方程y"+py+q=e[P(x) COSO+Pn(x) )sina]的特解形式: 应用欧拉公式可得 eAx[P(x)coax+P()sinop(x)e tio)x+ p()e(-iojx 设方程y"+py+q=P(x)eo的特解为y1*=xQn(x)l(+o), 则y1*=xQn(x)(1)必是方程y+py+q=P(x)e(k-o的特解, 其中当io不是特征方程的根时k取0,否则取1 因此方程y"+py+y=eAPx) COAx+Pn(x)inox的特解为 I*=xem()e(tio)x+x2m(x)e-i@)xr =xkeAr[om(x(cos sinox)+o(x)(cos @x-isinox) -xke[Rom(x)coax+R2m(x)sinox 上页 下页
上页 返回 下页 方程y+py+qy=e x [Pl (x)cosx+Pn (x)sinx]的特解形式 应用欧拉公式可得 e x [Pl (x)cosx+Pn (x)sinx] 设方程y+py+qy=P(x)e (+i)x的特解为y1 *=x kQm (x)e (+i)x =P(x)e (+i)x +P(x)e (−i)x 则 P(x)e Q (−i)x的特解 m (x)e y1 *=x (−i)x必是方程y+py+qy= k 其中当i不是特征方程的根时k取0否则取1 因此方程y+py+qy=e x [Pl (x)cosx+Pn (x)sinx]的特解为 y1 *=x kQm (x)e (+i)x+x k Qm (x)e (−i)x =x ke x [Qm (x)(cosx+isinx)+Qm (x)(cosx−isinx)] =x k e x [R(1) m (x)cosx+R(2) m (x)sinx]