当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

电磁波辐射(PPT讲稿)Radiation of Electromagnetic Waves

资源类别:文库,文档格式:PPT,文档页数:47,文件大小:1.3MB,团购合买
7.1、potentials of electromagnetic field, gauge invariance 7.2、d’Alembert equation and retarded potential 7.3、electric dipole radiation 7.4、EM radiation from arbitrary motion charge
点击下载完整版文档(PPT)

Ch 7 Radiation of Electromagnetic Waves 7.1, potentials of electromagnetic field gauge invariance 7.2 d' Alembert equation and retarded potential 7.3, electric dipole radiation 7.4 EM radiation from arbitrary motion charge

7.1、potentials of electromagnetic field, gauge invariance 7.2、d’Alembert equation and retarded potential 7.3、electric dipole radiation 7.4、EM radiation from arbitrary motion charge Ch 7 Radiation of Electromagnetic Waves

1 What is EM radiation EM field is excited by time-dependent charge and currents. It may propagate in form of waves The problem is usually solved in terms of potentials 特征:与1/r正比的电磁场! 2. It is a boundary value problem Source charge and current excites EMF, EMF in turn affects source distribution -- boundary value problem For convenience our discussions are limited to a simple case Distribution of source is known

1. What is EM radiation EM field is excited by time-dependent charge and currents. It may propagate in form of waves. The problem is usually solved in terms of potentials. 2.It is a boundary value problem Source (charge and current) excites EMF, EMF in turn affects source distribution --- boundary value problem! For convenience, our discussions are limited to a simple case – Distribution of source is known. 特征:与1/r 正比的电磁场!

87. 1 vector potential and scalar potential potentials are slightly different from the static cases 1.a) vector potentia sinceB=0, we can introduce vector potential A as the static field,B=VxA

§7.1 vector potential and scalar potential potentials are slightly different from the static cases since ,we can introduce vector potential as the static field,  B = 0  A  B A   =  1.a)vector potential

= 1.b) scalar potential Since×E=-≠0, scalar potential can not be defined as before aA OA V×E V×A=-V× V×(E+) t Define scalar func⑨ 0A 0A e+ at

Since ,scalar potential can not be defined as before  0    = − t B E   1.b)scalar potential B A   =  t A A t E    = −    = −    ( ) = 0    + t A E   = −   + t A E  Define scalar func   t A E   = − −   

2). Gauge invariance Potentials are not uniquely determined they differ by a gauge transformation. A>A'=A+Vy q→>9=q at Gauge: Given a set of (A, 9) (A, give identical electric and magnetic fields

2).Gauge invariance t A A A   →  = − →  = +          (A, )  Potentials are not uniquely determined, they differ by a gauge transformation. Gauge: Given a set of give identical electric and magnetic fields ' ' ( , ) A 

Prove: since A andA',and p can not change E and B. soB=VxA=V×A+V×Vv=V×A A=A+Vy E=-VP-aA aA OA V(q+) at at at at at aA at ●规范不变性:在规范变换下物理规律满足的动力学方程保持不变 的性质(在微观世界是一条物理学基本原理)

Prove: since and , and can not change E and B, so A  A    B A A A =  =  +  =    A = A +    t A t t t A t A E   −   = −  +   −     = −  −    = −  −     ( )      A t   = − −  t   = −    l 规范不变性:在规范变换下物理规律满足的动力学方程保持不变 的性质(在微观世界是一条物理学基本原理)

3. Two typical gauges To reduce arbitrariness of potential, we give some constraint-- Gauge fiⅸing。 Symmetry or explicit physical interpretation ● Coulomb gauge condition V·A=0 transverse (横场),V0 longitudinal(纵场)。 o is determined by instantaneous distribution of charge density (similar to static coulomb field)

l Coulomb gauge condition  A = 0  3).Two typical gauges transverse (横场), longitudinal (纵场)。 is determined by instantaneous distribution of charge density (similar to static coulomb field) A    To reduce arbitrariness of potential, we give some constraint --- Gauge fixing。 Symmetry or explicit physical interpretation

Function satisfies Prove V A'=VA+VVy=oVV=0 ● Lorenz gauge Ludwig Lorenz ondition v4+ a9=o dt Function y satisfies prove:v.A't 1 a =V·4+ V Vu I a1o at t 0 (V·A+ +(V2v c2 at2 satisfy manifest relativistic covariant equations

 0 2 Function satisfies   = l Lorenz gauge condition 0 1 2 =    + c t A   A,  satisfy manifest relativistic covariant equations  Function satisfies  0 1 2 2 2 2 =    − c t   ) 0 1 ) ( 1 ( 2 2 2 2 2 =   +  −    + c t c t A      A =  A +   = 0   0 2 Prove   = 0 1 2 2 2 2 =    − c t   2 2 2 2 2 1 1 1 c t c t A c t A   −   =  +  +      +       prove: Ludwig Lorenz

D'Alembert equation 824 10 V(V·A+-x) at Vp+e(VA=_p Prove: substitute E=V×A E=vat Maxwell egs OE V×B=£μoat ·E And using V×(V×A)=V(V·A)-V2A

2 2 2 2 2 0 2 0 1 1 ( ) ( ) A A A J c t c t A t         − −    + = −     +   = −  Prove:substitute , into Maxwell eqs And using B A   =  t A E   = − −    0 0 0 0 ,     +   =    = J E t E B     A A A    2  ( ) = (  ) −  4). D’Alembert equation

4. a Under coulomb gauge 02 V c2 at2 So o satisfies Poisson equation as in static case instantaneous interaction? 4. b Under lorenz gauge VA c- at c2 at2

2 2 2 2 2 0 2 0 1 1 A A J c t c t         − −  = −    = − So satisfies Poisson equation as in static case. instantaneous interaction?  4.a) Under coulomb gauge 4.b) Under Lorenz gauge 2 2 2 2 2 2 2 2 0 0 1 1 A A J c t c t         − = −  − = −  

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共47页,可试读16页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有