2.4控制系统的方块图、信号流图与梅逊公式 控制系统的方块图是系统各元件特性、系统结构和信号流向的图解表示法。 241方块图元素 (1)方块( Block Diagram):表示输入到输出单向传输间的函数关系。 c(t) C(s) 信号线 方块 图2-14方块图中的方块 信号线:带有箭头的直线,箭头表示信号的流向,在直线旁标记信号的时间函数或 象函数。 (2)比较点(合成点、综合点) Summing point 两个或两个以上的输入信号进行加减比较的元件 +”表示相加,“-”表示相减 号可省略不写 T1+T2 R( RS-R(s) T2 R2(s) T3 r1-T2+3 T2 图2-15比较点示意图 注意:进行相加减的量,必须具有相同的量刚。 (3)分支点(引出点、测量点) Branch point 表示信号测量或引出的位置
32 2.4 控制系统的方块图、信号流图与梅逊公式 控制系统的方块图是系统各元件特性、系统结构和信号流向的图解表示法。 2.4.1 方块图元素 (1)方块(Block Diagram):表示输入到输出单向传输间的函数关系。 R(s) G(s) C(s) 图2-14 方块图中的方块 信号线 方块 r(t) c(t) 信号线:带有箭头的直线,箭头表示信号的流向,在直线旁标记信号的时间函数或 象函数。 (2)比较点(合成点、综合点)Summing Point 两个或两个以上的输入信号进行加减比较的元件。 “+”表示相加,“-”表示相减。“+”号可省略不写。 Υ + 1 Υ1+Υ2 Υ2 + - ( ) ( ) 1 2 R s −R s ( ) 1 R s ( ) 2 R s Υ1 Υ1-Υ2+Υ3 Υ2 - Υ3 图2-15比较点示意图 注意:进行相加减的量,必须具有相同的量刚。 (3)分支点(引出点、测量点)Branch Point 表示信号测量或引出的位置
R(s) P(s) C(s) G1(s) P(s) 图2-16分支点示意图 注意:同—位置引出的信号大小和性质完全一样 242几个基本概念及术语 N(s) E(s) R(s)- 1(s) G2(s) B(s) H(s 打开反馈 图2-17反馈控制系统方块图 1)前向通路传递函数假设N(s=0 打开反馈后,输出C(s与R(s)之比。在图中等价于C(s)与误差E(s)之比。 C(s)=G1(s)G2(s)=G(s) E(S) (2)反馈回路传递函数 Feed forward Transfer function假设N=0 主反馈信号B(s)与输出信号C(s)之比。 B(s) C(s) (3)开环传递函数 Open-loop Transfer Function假设N(s)=0 主反馈信号B(s)与误差信号E(s)之比
33 图2-16 分支点示意图 P(s) R(s) P(s) C(s) ( ) 1 G s ( ) 2 G s 注意:同一位置引出的信号大小和性质完全一样。 2.4.2 几个基本概念及术语 + + H(s) - + R(s) E(s) B(s) N(s) 打开反馈 ( ) 1 G s ( ) 2 G s 图2-17 反馈控制系统方块图 (1) 前向通路传递函数 假设 N(s)=0 打开反馈后,输出 C(s)与 R(s)之比。在图中等价于 C(s)与误差 E(s)之比。 ( ) ( ) ( ) ( ) ( ) 1 2 G s G s G s E s C s = = (2) 反馈回路传递函数 Feedforward Transfer Function 假设 N(s)=0 主反馈信号 B(s)与输出信号 C(s)之比。 ( ) ( ) ( ) H s C s B s = (3) 开环传递函数 Open-loop Transfer Function 假设 N(s)=0 主反馈信号 B(s)与误差信号 E(s)之比
B(s) G,(SG2(S)H(S=G(S)H(S) E(s) (4)闭环传递函数 Closed- oop Transfer Function假设N(s)=0 输出信号C(s)与输入信号R(s)之比 C(s) G,(S)G,(s) G(s) R(s) 1+H(sG(s) 1+H(SG(s) 推导:因为C(s)=E(s)G(s)=[R(s)-C(s)H(s)G(s) 右边移过来整理得Cs)=Cs R(S)1+ H(SG(s) 即pC)=G)=前向通路传递函数 R(s)1+H(s)G(s)1+开环传递函数 (5)误差传递函数假设N(s)=0 误差信号E()与输入信号R(s)之比 将C(s)=E(s)G(s)代入上式,消去G(s)即得 E R(s)1+H(s)G(s)1+开环传递函数 (6)输出对扰动的传递函数假设R(s=0 N(s)一 G2(s) G1(s) Hs 图2-18输出对扰动的结构图 由图2-18,利用公式料,直接可得:Mx()C{)G2(s) N(s) 1+G(S)H(S) (⑦)误差对扰动的传递函数假设R(s=0 N(s) )[u(o)}→E() G1(s) 图2-19误差对扰动的结构图
34 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 G s G s H s G s H s E s B s = = (4) 闭环传递函数 Closed-loop Transfer Function 假设 N(s)=0 输出信号 C(s)与输入信号 R(s)之比。 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) 1 2 H s G s G s H s G s G s G s R s C s + = + = 推导:因为 C(s) = E(s)G(s) = [R(s) −C(s)H(s)]G(s) 右边移过来整理得 1 ( ) ( ) ( ) ( ) ( ) H s G s G s R s C s + = 即 开环传递函数 前向通路传递函数 + = + = 1 ( ) ( ) 1 ( ) ( ) ( ) H s G s G s R s C s ** (5) 误差传递函数 假设 N(s)=0 误差信号 E(s)与输入信号 R(s)之比。 将 C(s) = E(s)G(s) 代入上式,消去 G(s)即得: +开环传递函数 = + = 1 1 1 ( ) ( ) 1 ( ) ( ) R s H s G s E s (6) 输出对扰动的传递函数 假设 R(s)=0 - N(s) C(s) H(s) ( ) 2 G s ( ) 1 G s 图 2-18 输出对扰动的结构图 由图 2-18,利用公式**,直接可得: 1 ( ) ( ) ( ) ( ) ( ) ( ) 2 G s H s G s N s C s M s N + = = (7) 误差对扰动的传递函数 假设 R(s)=0 N(s) H(s) E(s) + ( ) 1 G s ( ) 2 G s -1 图 2-19 误差对扰动的结构图
由图2-19,利用公式*,直接可得 MNE(S) E(s) N(S)1+G(SH(S) 线性系统满足叠加原理,当控制输入R(s)与扰动Ns)同时作用于系统时,系统的 输出及误差可表示为 C(s) G(s)R)+1+G(s)H( G2(s) 1+G(s)H(s) E(S)-1+G(s)H(s) R()G,(S)H 1+G(s)H(s) N(s) 注意:由于N(s)极性的随机性,因而在求E(s)时,不能认为利用N(s)产生的误差可抵 消R(s)产生的误差。 2.4.3方块图的绘制 (1)考虑负载效应分别列写系统各元部件的微分方程或传递函数,并将它们用方框(块) 表示。 (2)根据各元部件的信号流向,用信号线依次将各方块连接起来,便可得到系统的方 块图 系统方块图-也是系统数学模型的一种。 例2-8画出下列RC电路的方块图 R (a) 图2-20-阶RC网络 解:由图2-20,利用基尔霍夫电压定律及电容元件特性可得 u -ll (s)= U1(s)-U(s) 对其进行拉氏变换得 R dt U(S) ( 由(1)和(2)分别得到图(b)和(c)
35 由图 2-19,利用公式**,直接可得: 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 G s H s G s H s N s E s M s NE + − = = 线性系统满足叠加原理,当控制输入 R(s)与扰动 N(s)同时作用于系统时,系统的 输出及误差可表示为: ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) 2 N s G s H s G s R s G s H s G s C s + + + = ( ) 1 ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) 2 N s G s H s G s H s R s G s H s E s + − + = 注意:由于 N(s)极性的随机性,因而在求 E(s)时,不能认为利用 N(s)产生的误差可抵 消 R(s)产生的误差。 2.4.3 方块图的绘制 (1)考虑负载效应分别列写系统各元部件的微分方程或传递函数,并将它们用方框(块) 表示。 (2)根据各元部件的信号流向,用信号线依次将各方块连接起来,便可得到系统的方 块图。 系统方块图-也是系统数学模型的一种。 例 2-8 画出下列 RC 电路的方块图。 R C i (a) ui uo 图 2-20 一阶 RC 网络 解:由图 2-20,利用基尔霍夫电压定律及电容元件特性可得: = − = c idt u R u u i o i o 对其进行拉氏变换得: = − = (2) ( ) ( ) (1) ( ) ( ) ( ) sC I s U s R U s U s I s o i o 由(1)和(2)分别得到图(b)和(c)
R I(s) SC (b) 将图(b)和(c)组合起来即得到图(d),图(d)为该一阶RC网络的方块图 I(s) 1 U(s) R U(s) (d) 例2-9画出下列RC网络的方块图。 R R2 (a)电路图 R R U(s) U(S) l1(s) l2(s) b)运算电路图 解:(1)根据电路定理列出方程,写出对应的拉氏变换,也可直接画出该电路的运算电 路图如图(b);(2)根据列出的4个式子作出对应的框图;(3)根据信号的流向将各方框 依次连接起来
36 (b) Ui (s) I(s) U (s) o I(s) (c) U (s) o 将图(b)和(c)组合起来即得到图(d),图(d)为该一阶 RC 网络的方块图。 - I(s) (d) U (s) o U (s) o U (s) i 例 2-9 画出下列 R-C 网络的方块图。 (a) 电路图 ur 1 i 2 i R1 R2 uc C1 C2 (b) 运算电路图 R1 ( ) R2 1 U s C U (s) r U (s) c ( ) 1 I s ( ) 2 I s 1 1 sC 2 1 sC 解:(1)根据电路定理列出方程,写出对应的拉氏变换,也可直接画出该电路的运算电 路图如图(b);(2)根据列出的 4 个式子作出对应的框图;(3)根据信号的流向将各方框 依次连接起来
U(s)-Uc(s) 1(s)= (1) R 1(s)-12(s) (2) sC Uc(s)-U(s) 12(s) R2 U,(s) U2(s) C Uc(s) U (c)方块图 图2-21二阶RC网络 根据公式(1)(4),分别画出对应的方块图,如图(c)中虚线框所示 由图清楚地看到,后一级R2-C2网络作为前级R1C1网络的负载,对前级R1C1网络 的输出电压u产生影响,这就是负载效应 如果在这两极RC网络之间接入一个输入阻抗很大而输出阻抗很小的隔离放大器 如图2-22所示。则此电路的方块图如图(b)所示。 R R 隔离放大器 C 图2-22带隔离放大器的两级RC网络
37 = − = − = − = (4) ( ) ( ) (3) ( ) ( ) ( ) (2) ( ) ( ) ( ) (1) ( ) ( ) ( ) 2 2 2 2 1 1 2 1 1 1 1 1 sC I s U s R U s U s I s sC I s I s U s R U s U s I s c C c C r C - - - C B ① ② ③ ④ A (c)方块图 1 1 sC 2 1 sC ( ) 1 U s C U (s) r ( ) 1 I s U (s) c U (s) c ( ) 2 I s 1 1 R 2 1 R ( ) 1 U s C 图 2-21 二阶 RC 网络 根据公式(1)~(4),分别画出对应的方块图,如图(c)中虚线框所示。 由图清楚地看到,后一级 R2-C2 网络作为前级 R1-C1 网络的负载,对前级 R1-C1 网络 的输出电压 1 c u 产生影响,这就是负载效应。 如果在这两极 R-C 网络之间接入一个输入阻抗很大而输出阻抗很小的隔离放大器, 如图 2-22 所示。则此电路的方块图如图(b)所示。 图2-22 带隔离放大器的两级RC网络 隔 离 放 大 器 R1 R2 ur C1 C2 uc ( a)
K R C 244方块图的简化—等效变换 为了由系统的方块图方便地写出它的闭环传递函数,通常需要对方块图进行等效变 换。方块图的等效变换必须遵守—个原则,即变换前后各变量之间的传递函数保持不变。 在控制系统中,任何复杂系统主要由响应环节的方块经串联、并联和反馈三种基本形式 连接而成。三种基本形式的等效法则一定要掌握。 (1)串联连接 R(s) U1(s) U2(s) C(s)R(s) C(s) G(s) G2(s) G3(s) G(s) (a) ⑦图2-23环节的串联连接 在控制系统中,常见几个环节按照信号的流向相互串联连接。 特点∶前一环节的输岀量就是后一环节的输入量。 U1(s)=G1(s)R(s) U2(s)=G2(sU1(s)=G2(s)G1(s)R(s) C(s=G(sU2(S)=G3(S)G2(S), (S)R(S) R(s)U1(SG2(s)G, (s)=G(s) 结论:串联环节的等效传递函数等于所有传递函数的乘积。 G()=∏G(s) 式中,n为相串联的环节数。 (2)并联连接
38 K 1 1 R 2 1 1 R 1 sC 2 1 sC U (s) r U (s) c 2.4.4 方块图的简化——等效变换 为了由系统的方块图方便地写出它的闭环传递函数,通常需要对方块图进行等效变 换。方块图的等效变换必须遵守一个原则,即变换前后各变量之间的传递函数保持不变。 在控制系统中,任何复杂系统主要由响应环节的方块经串联、并联和反馈三种基本形式 连接而成。三种基本形式的等效法则一定要掌握。 (1)串联连接 R(s) C(s) (a) ( ) 1 U s ( ) 2 U s ( ) 1 G s ( ) 2 G s ( ) 3 G s R(s) G(s) C(s) (b) 图 2-23 环节的串联连接 在控制系统中,常见几个环节按照信号的流向相互串联连接。 特点:前一环节的输出量就是后一环节的输入量。 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 3 2 1 2 2 1 2 1 1 1 C s G s U s G s G s G s R s U s G s U s G s G s R s U s G s R s = = = = = ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 G s G s G s G s R s C s = = 结论:串联环节的等效传递函数等于所有传递函数的乘积。 = = n i i G s G s 1 ( ) ( ) 式中,n 为相串联的环节数。 (2)并联连接
G1(s) C1(s) R(s G2(s) C(s) R(s) G3(s) G(s) (b) 图2-24环节的并联连接 特点:各环节的输入信号是相同的,均为R(s),输出C(s)为各环节的输出之和, 即 C(s)=C(s)+C2(s)+C3(s) =G1(s)R(s)+G2(s)R(s)+G3(s)R(s) G1(s)+G2(s)+G3(s)F(s) C(s)=G1(s)+G2(s)+G3(s)=G(s) R 结论:并联环节的等效传递函数等于所有并联环节传递函数的代数和。即 G(s)=∑G(s) 式中,n为相并联的环节数,当然还有“-"的情况。 (3)反馈连接 R(s) E(s C(s) G(s) B(s) R(s)「G()c(s) H() 1+G(s)H(s) (a) 图2-25环节的反馈连接 (4)比较点和分支点(引出点)的移动 有关移动中,“前”、“后”的定义:按信号流向定义,也即信号从“前面”流向“后面”, 而不是位置上的前后
39 (a) R(s) ( ) C(s) 2 G s ( ) 1 G s ( ) 3 G s ( ) 2 C s ( ) 1 C s ( ) 3 C s G(s) (b) R(s) C(s) 图 2-24 环节的并联连接 特点:各环节的输入信号是相同的,均为 R(s),输出 C(s)为各环节的输出之和, 即: [ ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 1 2 3 1 2 3 G s G s G s R s G s R s G s R s G s R s C s C s C s C s = + + = + + = + + ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 G s G s G s G s R s C s = + + = 结论:并联环节的等效传递函数等于所有并联环节传递函数的代数和。即: ( ) ( ) 1 G s G s n i i = = 式中,n 为相并联的环节数,当然还有“-”的情况。 (3)反馈连接 (a) R(s) C(s) G(s) H(s) +- E(s) B(s) (b) R(s) C(s) 图 2-25 环节的反馈连接 (4)比较点和分支点(引出点)的移动 有关移动中,“前”、“后”的定义:按信号流向定义,也即信号从“前面”流向“后面”, 而不是位置上的前后
R(s) C(s) G(s) C(s) G(s) 土 土 比较点前移 比较点后移 Q (s) Q( s) P放大→缩小 P缩小→放大 R(s) G(s) R(s)-4G(s) 土 土 Qs G(s) Q(s) G(s) C(s)=R(s)G(s)±Q(s) C(s)=[R(s)±Q(s)G(s) =[R(s)+ Q(s) Gs)() =R(s)G(s)±Q(s)G(s) 图2-26比较点移动示意图 R(s G(S) C(s) R(s) G(s) r(s) 分支点(引出点)前移 分支点(引出点)后移 R(s G(s) C(s) G(s) R(s) G(s) c(s) G(s) C(S)=R(SG(s) 右R(s)=R(s)G(s) R(s)左
40 R(s) C(s) + G(s) Q(s) 比较点前移 比较点后移 R(s) C(s) G(s) + Q(s) 放大→缩小 缩小→放大 G(s) R(s) C(s) G(s) + Q(s) C(s) R(s) G(s) G(s) + Q(s) ] ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) G s G s Q s R s C s R s G s Q s = + = ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) R s G s Q s G s C s R s Q s G s = = 图 2-26 比较点移动示意图 R(s) 分支点(引出点)前移 G(s) C(s) C(s) 分支点(引出点)后移 R(s) G(s) R(s) C(s) C(s) R(s) G(s) G(s) C(s) R(s) G(s) R(s) C(s) = R(s)G(s) 右 ( ) ( ) 1 ( ) ( ) ( ) R s G s R s = R s G s = 左
图2-27分支点移动示意图 例2-10用方块图的等效法则,求图2-28所示系统的传递函数C(S)/R(S) R(s) ○O→ C( L 图2-28多回路系统方块图 解:这是一个具有交叉反馈的多回路系统,如果不对它作适当的变换,就难以应用串联、 并联和反馈连接的等效变换公式进行化简。本题的求解方法是把图中的点A先前移至B 点,化简后,再后移至C点,然后从内环到外环逐步化简,其简化过程如下图。 回 R(s) c(s) H, G=G2G3+G4串联和并联 反馈公式 1+gh G,Gs G.G6 1+G 反馈公式 1+GG6HG2 I1 G,HIG2 1+GH2+GH,G 1+GH. C(s) G,G R(s) =G(s) G1(G2G3+G4) 1+G,1+G3H2+G1H1G2+GG51+(G2G3+G4G1+H2)+G1H1G2
41 图 2-27 分支点移动示意图 例 2-10 用方块图的等效法则,求图 2-28 所示系统的传递函数 C(s)/R(s)。 R(s) A - B C(s) G1 G2 G3 G4 H1 H2 - C 图 2-28 多回路系统方块图 解:这是一个具有交叉反馈的多回路系统,如果不对它作适当的变换,就难以应用串联、 并联和反馈连接的等效变换公式进行化简。本题的求解方法是把图中的点 A 先前移至 B 点,化简后,再后移至 C 点,然后从内环到外环逐步化简,其简化过程如下图。 R(s) - - - C(s) G1 H2 G5 G6 G7 H1G2 5 1 G G5 = G2G3 + G4 串联和并联 5 2 5 6 1 G H G G + = 反馈公式 5 2 1 1 2 1 5 5 2 1 1 2 5 2 1 5 5 1 6 1 2 1 6 7 1 1 1 1 1 1 G H G H G G G G H G H G G H G G G G G H G G G G + + = + + + = + = 反馈公式 2 3 4 1 2 1 1 2 1 2 3 4 5 2 1 1 2 1 5 1 5 7 7 1 ( )( ) ( ) 1 1 ( ) ( ) ( ) G G G G H G H G G G G G G H G H G G G G G G G G s R s C s + + + + + = + + + = + = =