点击切换搜索课件文库搜索结果(686)
文档格式:PPT 文档大小:2.23MB 文档页数:76
第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 第四节 曲面与空间曲线 *第五节 矢量函数的微积分
文档格式:PDF 文档大小:268.56KB 文档页数:32
Fourier 级数的分析性质 为简单起见,假定 f x( )的周期为2π。 首先,利用 Riemann 引理可以直接得出 定理 16.3.1 设 f x( )在[−π,π]上可积或绝对可积,则对于 f x( )的 Fourier 系数an与bn,有
文档格式:PDF 文档大小:188.57KB 文档页数:22
性质1(线性性)设f(x)和8(x)都在[a,b上可积,k1和k2是常数 小函数kf(x)+k2g(x)在a,b上也可积,且有 ∫k/(x)+k8(x)x=k(x)dx+Jg(x)x 证对anb的任意一个划分 q=x0
文档格式:PDF 文档大小:311.83KB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PDF 文档大小:154.18KB 文档页数:13
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值。 另一方面,在实际问题中,许多函数只是通过测量、试验等方法 给出了在若干个离散点上的函数值,如果问题的最后解决有赖于求出 这个函数在某个区间上的积分值,那么 Newton-Leibniz 公式是难有用 武之地的
文档格式:PPT 文档大小:1.16MB 文档页数:32
Fourier级数的分析性质 为简单起见,假定f(x)的周期为2π。 首先,利用 Riemann引理可以直接得出 定理16.3.1设f(x)在[-上可积或绝对可积,则对于f(x)的 Fourier系数an与b
文档格式:PPT 文档大小:441.5KB 文档页数:13
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值
文档格式:PPT 文档大小:1.45MB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[a, b]有限且被积函 数 f (x)在[a, b]上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PPT 文档大小:1.64MB 文档页数:86
例一: 设计一个求两个4位二进制数之积的数字乘法 器。乘数存于寄存器Q中,被乘数存于寄存器M中, 求两数之积的命令信号为MF,Z为8位乘积
文档格式:PDF 文档大小:104.47KB 文档页数:34
一、和、差、积、商的求导法则 定理 可导 并且 们的和、差、积、商 分母不为零在点 处也 如果函数 在点 处可导 则它
首页上页3940414243444546下页末页
热门关键字
搜索一下,找到相关课件或文库资源 686 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有