点击切换搜索课件文库搜索结果(5784)
文档格式:PPT 文档大小:1.25MB 文档页数:44
前面讨论的函数大多是z=f(x,y)形式,如=xy和z=√x2+y2等 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler方程 F(x,y)=y-x-Eny=0,0
文档格式:PPT 文档大小:916KB 文档页数:31
空间曲线的切线和法平面 一条空间曲线可以看成一个质点在空间运动的轨迹。取定一个直 角坐标系,设质点在时刻t位于点P(x()y()=(t)处,即它在任一时刻 的坐标可用 (x=x(t)
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PDF 文档大小:891.95KB 文档页数:53
本章主要介绍数据与文字的表示方法,定点加/减法运算及加法器,定点乘法运算,定点除法运算,定点运算器的组成与结构,浮点运算方法和浮点运算器。 2.1 数据与文字的表示方法 2.2 定点数的加减法运算及加法器 2.3 定点乘法运算 2.4 定点除法运算 2.5定点运算器的组成与结构 2.6浮点运算方法和浮点运算器
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
文档格式:PPT 文档大小:1.72MB 文档页数:53
Green公式 设L为平面上的一条曲线,它的方程是r(t=x(t)i+y(t)j,at≤ 如果r(a)=r(B),而且当t,t2∈(a,B),t≠t2时总成立r(t)≠r(t2),则称 L为简单闭曲线(或 Jordan曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PPT 文档大小:2.17MB 文档页数:55
函数极限的定义 在半径为r 的圆上任取一小段圆弧,记它所对的圆心角的弧度为 2x,则圆弧长度为2xr,而圆弧所对的弦的长度为2 sin r x,弦长与弧长 之比值 y是 x 的函数,其关系式为
文档格式:PPT 文档大小:1.73MB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f (x) 在点 x 0 的某个邻域中有定义,并且成立 lim x→x0 f (x) = f (x ) 0 , 则称函数 f (x) 在点 x 0 连续,而称 x 0 是函数 f (x) 的连续点
文档格式:PPT 文档大小:1.28MB 文档页数:29
有界性定理 定理3.4.1若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有 界。 证用反证法。 若f(x)在[ab]上无界,将[ab]等分为两个小区间[aa+b]与 a+b,b,则f(x)至少在其中之一上无界,把它记为[a,b] 再将闭区间[ab]与等分为两个小区间a1,a1+b]与a1+b
文档格式:PPT 文档大小:596.5KB 文档页数:20
复合函数求导法则 定理4.4.1(复合函数求导法则)设函数u=g(x)在x=x可导, 函数y=f(u)在u=uo=g(x)处可导,则复合函数y=f(g(x))在x=x可 导,且有 证因为y=f(u)在u处可导,所以可微。由可微的定义,对任 意一个充分小的△u≠0,都有
首页上页484485486487488489490491下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5784 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有