点击切换搜索课件文库搜索结果(1186)
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于∑中任一向量,表达式a=a1+a2+…+am,a1e,i=12,m是唯一的,则称∑V为直和,记为
文档格式:DOC 文档大小:232.5KB 文档页数:2
4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件:
文档格式:DOC 文档大小:143.5KB 文档页数:2
4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换
文档格式:DOC 文档大小:197.5KB 文档页数:2
4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
首页上页6061626364656667下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1186 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有