点击切换搜索课件文库搜索结果(702)
文档格式:PPT 文档大小:780KB 文档页数:16
向量空间有两种运算:加法和数量乘法,合起来成为线性 运算。因此向量空间也可称为线性空间。向量空间元素之间的最基本的关系就体现在运算上即所谓线性关系上。因此讨论向量之间的线性关系在研究向量空间时起着极为重要的作用。本节仅限于在F中进行讨论
文档格式:PPT 文档大小:310.5KB 文档页数:14
定理3.5.1(线性方程组有解的判别定理): 线性方程组(3.5.1)有解的充要条件是它的 系数矩阵A与增广矩阵A有相同的秩
文档格式:PPT 文档大小:492KB 文档页数:18
3.1消元法 a1x+a12x2+…+anxn=b 对一般线性方程组{a21x+a2x2++a2nx(1) amxr +am2x2++. 当m=n,且系数行列式D≠0时,我们知方程组(1)有唯一解, 其解由 Gramer法则给出。但是若此时D=0,我们无法知道此时 方程组是有解,还是无解。同时,当m≠n时,我们也没有解 此方程组(1)的有效方法。因此我们有必要对一般线性方程
文档格式:PPT 文档大小:173.5KB 文档页数:6
一、向量空间的定义和例子 向量与向量空间对我们并不陌生,在解几中,我们已经讨 论过二维和三维向量空间中的向量。 在那里,两个向量相加可以按平行四边形法则相加,若向 量用坐标表示,则两个向量相加转化为对应坐标相加,数与向 量相乘变为数与向量的每个坐标相乘,由此可抽象出一般向量 的定义
文档格式:PPT 文档大小:458KB 文档页数:20
在解决线性方程组是否有解的判别条件之后, 我们知道在秩A=秩A=n(方程组未知量个数)时, 方程组有唯一解。在秩A=秩A
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.VV上的一个函数(,·),如果满足: (i)(,)对第一个变量是线性的; (ii)(a,)=(B,a); (iii)a∈v,(a,a)≥0,且(a,a)=0a=0
文档格式:DOC 文档大小:242.5KB 文档页数:5
在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量
文档格式:DOC 文档大小:98KB 文档页数:3
设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
文档格式:DOC 文档大小:192KB 文档页数:3
1.正交变换 设V是n维欧氏空间,A是V内一个线性变换.如果对任意a,B∈V都有
文档格式:PPT 文档大小:458KB 文档页数:13
定义1:不可约多项式p(x)称为f(x)的k重因式 (kEN),如果p(x)f(x)而p(x)f(x) 当k=1时,p(x)就称f(x)的单因式, 当k>1时,p(x)称为f(x)的重因式。 如果f(x)的标准分解式为:
首页上页6465666768697071下页末页
热门关键字
搜索一下,找到相关课件或文库资源 702 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有