点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:145.5KB 文档页数:2
一.填空: (1)[f(t)dt (2)∫(x+a2-x2)2dx (3) d (4)已知f(x)=x+2f(x)d,则f(x)= dx (5) 0x2+6x+18 (6) tsin tdt= (7)设f(x)是连续函数,且F(x)=f(t)dt,则F(x)=
文档格式:PPT 文档大小:1.22MB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞、-∞0等情况
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PPT 文档大小:164KB 文档页数:2
设y=(x)≥0(x∈[a,b).在几何上,积分上限函数 表示以[a,x]为底的曲边梯形的面积.yy=f(x) 微分dA(x)=f(x)dx表示点x处以 dx为宽的小曲边梯形面积的近似值 A(x) f(x)dx △Af(x)dx,f(x)dx称为曲边梯形的面 积元素
文档格式:PDF 文档大小:223.6KB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x0 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞0、-∞等情况
文档格式:DOC 文档大小:136KB 文档页数:9
经济数学基础 第一章函数 第一章典型例题与综合练习 第一节典型例题 一、函数的概念 1 f(x)= +√4-x 2 例1求函数 In(x-1) 的定义域 解:要使函数有意义,必须 n(x-1)≠0x≠2 {x-1>0 {x>1 4-x20,即-2≤x≤2 故定义域D={x|1
文档格式:PPT 文档大小:213.5KB 文档页数:12
1.交通模型 考察在高速公路上行驶的交通车辆的流动问题.目的研究何 时发生交通堵塞及如何防止的问题.设x轴表示此公路,x轴 正方向车辆的前进方向. 先考虑连续模型.设u(t,x)表示时刻t的交通车辆按x方向分布 的密度,即在时刻t,位于区间段[x,x+dx]中的车辆数为 u(t,x)dx.再设 q(t,x) 为车辆通过x点的流通率,即在时段 [t,t+dt]内通过点x的车辆流量为取 q(t,x)dt
文档格式:PPT 文档大小:430KB 文档页数:15
第四章随机变量的数字特征 4-2方差 在实际问题中常关心随机变量与均值的 偏离程度,可用EX-EX|,但不方便;所以 通常用E(X-EX)2来度量随机变量X与其均 值EX的偏离程度。 1、定义 设X是随机变量,若E(X-EX)2存在,称其 为随机变量X的方差,记作DX,Var(X),即: DX=Var(X)=E(X-EX) 2.x称为标准差。 DX=E(X-E)2=(x-E)2p,离散型
文档格式:PPT 文档大小:888KB 文档页数:28
费马定理设函数f(x)在x的某邻域U(xo)上有定义, 并且在点x处可导,如果对任意x∈U(xo) 有f(x)≤f(xd),或f(x)f(xo 即在x取到极值,则f'(xo)=0 证明:不失一般性。设f(x)在点x=c取到最大值, 则f(x)≤f(c),x∈(a,b)
文档格式:PPT 文档大小:201.5KB 文档页数:16
初等函数的连续性 一、四则运算的连续性 定理1若函数f(x),g(x)在点x处连续, 则f(x)±g(x),f(x)g(x),y(x) (g(x)≠0) g(x) 在点x处也连续 例如,sinx,cosx在(-t∞)内连续, 故tanx,cotx,secx,cscx在其定义域内连续
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有