点击切换搜索课件文库搜索结果(1242)
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:PPT 文档大小:444KB 文档页数:16
一、C上多项式 对于F[x]上的多项式f(x),它在F上未必有根, 那么它在C上是否有根? 定理1.8.1(代数基本定理): 每一个次数大于零的多项式在复数域上至多有 个根。 定理1.8.2:
文档格式:PPT 文档大小:422KB 文档页数:14
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例:4a+3b,3x2+2x+1,y- 在多项式中,每个单项式叫做多项式的项。这是 形式表达式。 后来又把多项式定义为R上的函数:
文档格式:DOC 文档大小:57KB 文档页数:2
3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式
文档格式:PDF 文档大小:336.46KB 文档页数:30
行列式是多元一次方程组(线性方程组)求解中产生的.现在它不仅是解线性方程组的工具,也是线 性代数以及别的数学分支,物理学中常用工具,行列式的概念很简单关键是计算行列式的技巧及应用行 列式的灵活性.这是要特别注意的
文档格式:DOC 文档大小:57KB 文档页数:2
第三章3-2n阶方阵的行列式(续) 3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式 = 命题按行列式的第i行展开,有 证明将第i行先后与第i-1,i-2,…,1行交换,再展开。 推论行列式按第j行展开,有a=a 2、范德蒙行列式 形如 111 |= a1a2…an an 的行列式称为范德蒙行列式
文档格式:DOC 文档大小:163KB 文档页数:3
12.2.3一元多项式的判别式的定义 给定K[x]内一个n次多项式 F(x)=ax+axn-+…+an(a≠0) 设a1,a2,…an是它的n个根,令 称其为F(x)的判别式。显然,F(x)有重根其充分必要条件是D(F)=0 现在考察n元式
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E,则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数运算
文档格式:PPT 文档大小:181.5KB 文档页数:12
定义由n2个数组成的n阶行列式 等于所有取自不同行列的n个元素的 乘积的代数和∑-)apap2an 其中P1P2…Pn为自然数12,,n的一个排列, t为这个排列的逆序数
文档格式:PPT 文档大小:453KB 文档页数:12
利用行列式的依行(列)展开可以把n阶行列式化为n-1 阶行列式来处理,这在简化计算以及证明中都有很好的应用。 但有时我们希望根据行列式的构造把n阶行列式一下降为n-k 阶行列式来处理,这是必须利用 Laplace展开定理。为了说明 这个方法,先把余子式和代数余子式的概念加以推广
首页上页7374757677787980下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1242 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有