点击切换搜索课件文库搜索结果(1311)
文档格式:DOC 文档大小:132KB 文档页数:4
在 n 维线性空间中,任意 n 个线性无关的向量都可以取作空间的基.对于不 同的基,同一个向量的坐标一般是不同的.随着基的改变,向量的坐标是怎样变 化的
文档格式:DOC 文档大小:125KB 文档页数:3
一、线性空间的定义. 例 1 在解析几何里,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量算法.不少几何和力学对象的性质是可以通过向量的这两种运算来描述的
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
文档格式:DOC 文档大小:126.5KB 文档页数:4
一、二次型的标准型 二次型中最简单的一种是只包含平方项的二次型
文档格式:DOC 文档大小:1.77MB 文档页数:25
第一节 线性映射 第二节 线性变换的运算 第三节 线性变换和矩阵 第四节 不变子空间 第五节 特征根和特征向量 第六节 可以对角化的矩阵
文档格式:DOC 文档大小:63KB 文档页数:2
将分块乘法与初等变换结合就成为矩阵运算中极端重要的手段
文档格式:DOC 文档大小:116KB 文档页数:3
一、可逆矩阵的概念 在§2 我们看到,矩阵与复数相仿,有加、减、乘三种运算.矩阵的乘法是否 也和复数一样有逆运算呢?这就是本节所要讨论的问题. 这一节矩阵,如不特别声明,都是 nn 矩阵
文档格式:DOC 文档大小:1.67MB 文档页数:30
第一节 矩阵概念的一些背景 第二节 矩阵的运算 第三节 阵乘积的行列式与秩 第四节 矩阵的逆 第五节 矩阵的分块 第六节 初等矩阵 第七节 分块乘法的初等变换及应用举例
文档格式:DOC 文档大小:43.5KB 文档页数:1
即矩阵乘积的行列式等于它的因子的行列式的乘积 用数学归纳法,定理1可以推广到多个因子的情形,即有 推论1设A1,A2,…A是数域P上的mXn矩阵,于是 1A1A2…AHA1‖A2|…|A 定义6数域P上的n×n矩阵A称为非退化的,如果|A|≠0,否则称为退化
文档格式:DOC 文档大小:1.11MB 文档页数:32
第一节 引言 第二节 排列 第三节 n级行列式 第四节 n级行列式的性质 第五节 行列式的计算
首页上页8788899091929394下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1311 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有