Chapter 曲线积分与曲面积分小结 K心D
Chapter 4 曲线积分与曲面积分小结
第一部分:内容小结 对弧长的曲线积分 1定义:∫f(x,y)=Im∑f(5,m)△ →0 ∫f(x,y,z)=im∑f(5,n,97)△s ->0 2对弧长的曲线积分的性质: (JUf(x,y)士8(x,)d= f(x,y)k±,g(x,y)ds L (2)6f(x,y)d=k[,f(x,y)b(k为常数 L K心
第一部分: 内容小结 一. 对弧长的曲线积分 1.定义: ( , ) lim ( , ) . 1 0 → = = n i i i i L f x y ds f s ( , , ) lim ( , , ) . 1 0 → = = n i i i i i f x y z ds f s 2.对弧长的曲线积分的性质: (1) [ ( , ) ( , )] ( , ) ( , ) . = L L L f x y g x y ds f x y ds g x y ds (2) kf (x, y)ds k f (x, y)ds (k为常数). L L =
(3),f(x,y)=,∫(x,y)d+」J,f(x,y)d (L=L1+L2) (4)L f(x, y)ds AB BA f(, y)ds 对弧长的曲线积分与路径的走向无关! (5)s=d 3对弧长的曲线积分的计算: (1)直接计算法:方法:一代二换三定限 「,∫(x,y)ds ky吗1O,y(O)N(g2(+"2 a<t<B va K心
(3) ( , ) ( , ) ( , ) . 1 2 = + L L L f x y ds f x y ds f x y ds ( ). L = L1 + L2 (4) ( , ) ( , ) . AB = BA f x y ds f x y ds 对弧长的曲线积分与路径的走向无关! (5) . = L s ds 3.对弧长的曲线积分的计算: (1) 直接计算法: 方法:一代二换三定限 ( , ) [ ( ), ( )] ( ) ( ) 2 2 ( ) ( ) f x y ds f t t t t dt t y t x t L ===== + = =
y=y(x) 「f(x,y)ds ∫x,y(x)l1+y2(x)x a<r<h a p( ∫f(x,yd d ∫q(y),yl√1 c12 (y)dy C<K<d vc =r(O)cos 8 y=r(0)sin] L f(, y)ds a<6<B rP fIr(e)cos e,r(e)sin 012(0)+r2(0)de =0 =y(t) z=a(t) f(x, v, z)ds a<t<B ()y(,o(o)g2(o)+y2()+o2(nt K心
( , ) [ , ( )] 1 ( ) 2 ( ) f x y ds f x x x dx b a a x b y x L ===== + = ( , ) [ ( ), ] 1 ( ) 2 ( ) f x y ds f y y y dy d c c y d x y L ===== + = [ ( )cos , ( )sin ] ( ) ( ) ( , ) 2 2 ( )sin ( )cos f r r r r d f x y ds y r x r L + ===== = = [ ( ), ( ), ( )] ( ) ( ) ( ) ( , , ) 2 2 2 ( ) ( ) ( ) f t t t t t t dt f x y z ds t z t y t x t L + + ===== = = =
(2)利用对称性简化计算 (1)当L对称于x轴时, L f(x, y)ds 21/(x,)f(x-y)=(x, f(x,-y)=-∫(X,y) (2)当L对称于y轴时, 「2f(x,)ad= 25 f(x,y)ds f(x,y)=f(,y) f(-x,y)=-f(x,y) K心
(2) 利用对称性简化计算 (1) 当L对称于x轴时, − = − − = = 0 ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) f x y f x y f x y ds f x y f x y f x y ds L L 上 (2) 当L对称于y轴时, − = − − = = 0 ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) f x y f x y f x y ds f x y f x y f x y ds L L 右
4对弧长的曲线积分的应用: K心[ (1)当P(x,y)表示L的线蜜度时,m=』p(x,yd (2)当f(x,y)≡时,I弧长=d; roas (3)曲线弧的重心坐标x= ipds pds (4)曲线弧的转动惯量 Ix=fy'ads, I,=Leads, Io=L(x2+y2)Ads 对空间曲线构件也有结论!
(1) 当(x, y)表示L的线密度时, ( , ) ; = L m x y ds (2) ( , ) 1 , ; = L 当 f x y 时 L弧长 ds (3) 曲线弧的重心坐标 , . = = L L L L ds y ds y ds x ds x (4) 曲线弧的转动惯量 , , ( ) . 2 2 2 2 = = = + L o L y L I x y ds I x ds I x y ds 对空间曲线构件也有结论! 4.对弧长的曲线积分的应用:
对坐标的曲线积分 1定义:∫P(x,y)d=lm∑P(5,m)Ax -> 0 ∫Q(x,y)=lim∑Q(5,n)4 -) P(x,],a)dx=lim >P(Si, ni, si)Ax; 九- 0 i=1 Q(, y, z)dy=lim ∑Q(,n,)An 入->0 R(x,y,)z=lim∑R(,n,,)△z 入→>0 K心
二. 对坐标的曲线积分 1.定义: ( , ) lim ( , ) 1 0 → = = n i i i i L P x y dx P x ( , ) lim ( , ) 1 0 → = = n i i i i L Q x y dy Q y ( , , ) lim ( , , ) . 1 0 i i i n i P x y z dx = P i x = → ( , , ) lim ( , , ) . 1 0 i i i n i i Q x y z dy = Q y = → ( , , ) lim ( , , ) . 1 0 i i i n i i R x y z dz = R z = →
2对坐标的曲线积分的性质: (1J,KP(r,Ddx+k22(x,])dy kIL, P(x, y)dx+K2S,o(x,y)dy (2)如果把L分成L1和L2,则 「p=J,P+Q+[,Pd+g小 (3)JP(x,y)+(xy)=-P(x,y)dk+q(x,y 即对坐标的曲线积分与曲线的方向有关 K心
2.对坐标的曲线积分的性质: ( , ) ( , ) . (1) ( , ) ( , ) 1 2 1 2 = + + L L L k P x y dx k Q x y dy k P x y dx k Q x y dy . (2) , 1 2 1 2 + = + + + L L L Pdx Qdy Pdx Qdy Pdx Qdy 如果把L分成L 和L 则 + = − + −L L (3) P(x, y)dx Q(x, y)dy P(x, y)dx Q(x, y)dy 即对坐标的曲线积分与曲线的方向有关
3对坐标的曲线积分的计算: (1)直接计算法:方法:一代二换三定限 fPdr+edy x=o(t) y=y(t tma-piplo y=y(x Pac+二「m (Pl,y(x)]+elx, y(xly(x)be 从 → b Px+Q小y J从c→de (PIo(y), ylo(y)+elp(y), ylldy K心
3.对坐标的曲线积分的计算: (1) 直接计算法: 方法:一代二换三定限 { [ ( ), ( )] ( ) [ ( ), ( )] ( )} . ( ) ( ) P t t t Q t t t dt Pdx Qdy y t x t t L ===== + + = = → 从 { [ , ( )] [ , ( )] ( )} . ( ) Pdx Qdy P x x Q x x x dx b a y x x a b L + ===== + = → 从 { [ ( ), ] ( ) [ ( ), ]} . ( ) Pdx Qdy P y y y Q y y dy d c x y y c d L + ===== + = → 从
r(e)cos ly=r(O) 8 ∫Pd+Q小 d 从a→月a FPac+g小+Rh P y=y z=o(t) (PIo(),(t),a(t)lo'(t t从a→B + elo(t),y(t), a(tly'(t rIo(t),(t),a(tla(tft K心
. ( )sin ( )cos Pdx Qdy d y r x r L = = → + ======== 从 R t t t t dt Q t t t t P t t t t Pdx Qdy Rdz z t y t x t t [ ( ), ( ), ( )] ( )} [ ( ), ( ), ( )] ( ) { [ ( ), ( ), ( )] ( ) ( ) ( ) ( ) + + ===== + + = = = → 从