D01:10.13374j.isml00103x.206.9.001 第28卷第9期 北京科技大学学报 Vol.28 Na 9 2006年9月 Journal of University of Science and Technology Beijing Sep.2006 基于岩石可钻性指标的地层界面识别理论与方法 谭卓英蔡美峰)岳中琦)谭国焕李焯芬2 1)北京科技大学金属矿山高效开采与安全教育部重点实验室.北京1000832)香港大学土木工程系中国香港 摘要岩石可钻性指标是石油,矿山及地质部门广泛用于钻头选择和制定生产定额的重要参 数,但现行可钻性指标的定义及参数获取的实验方法还存在许多问题.通过分析,重新定义了岩石 的可钻性,提出了以单位能量下的穿孔速率作为可钻性指标的新概念:基于钻进过程中有效轴压、 转速,穿孔速率和可钻性指标间的耦合关系,建立了可钻性指标的计算公式。同时,对新的可钻性 指标在地层识别中的敏感性进行了分析,阐述了可钻性指标在地层识别中的物理意义.研究表明, 新的可钻性指标克服了传统可钻性指标在判层中存在的盲区,并可实现沿钻孔剖面的连续判层. 关键词岩石可钻性,地层界面:识别:钻孔参数:耦合关系 分类号TU41362 声波速率(严格说为纵波速率或声波时差) 1 岩石的可钻性 是通过测井数据获得的.由于岩石本身是一种非 根据岩石可钻性的定义1,表征可钻性的 完全弹性介质,岩石的矿物成分、颗粒大小、胶结 指标可以是岩石的物理力学性质(如抗压强度、压 状态,孔隙率及松散程度等,会造成声速差异,声 入硬度、点载荷强度、弹性模量及声波速率等)、穿 波速率也难以反映岩石的实际可钻性 孔速率、钻头进尺、破碎单位体积的能量(如普氏 一定条件下的实际穿孔速率虽然能反映穿透 捣碎法及巴氏砸碎法)及微钻法的穿孔速率、钻深 地层的围岩应力状态以及试件的离散性问题但 及钻时等指标.这些指标大体上可归纳为强度指 受地层、钻头类型及钻进参数的影响。条件性很 标、位移指标及能量指标 强。度量标准不准确 物理力学性质指标虽然在一定程度上反映了 破碎比能是指破碎单位体积岩石所需要的能 岩石抵抗破坏或被破碎的能力,但它们不能反映 量.一方面,实际岩石钻孔时,钻头、钻杆不仅和 钻进时岩石的破碎过程:抗压强度指标,即使是三 孔壁、岩屑存在摩擦,而且还有冲洗液的作用,其 轴抗压强度指标也不能完全模拟钻孔内实际的围 能量的传递方式与破碎比能实验模拟条件大相径 岩应力状态,且岩石取样也具有很大的离散性,加 庭因而破碎比能实验模拟不能反映孔底岩石的 压测试过程及压头与岩石端面的接触情况也与实 应力状态,同时也不能反映孔内的应力状态:另一 际的钻凿条件不一致:压入硬度及点载荷强度等 方面,无论是捣碎法还是砸碎法,破岩原理均 指标,由于实验本身的限制,接触面非常狭小,如 属冲击破碎,而勘探钻进为回转式,其破岩机理完 此小的点、线或面难以代表岩石的整体情况:弹性 全不同,也难以反映旋转破碎的情况. 模量是通过应力一应变曲线间接获得的,同样受 微钻法是由Roow提出的一种研究岩石可 到强度指标测试的限制.因而,不考虑岩石结构 钻性的方法,20世纪80年代在我国石油行业得 的复杂性以及脱离孔内围压及温度等环境而进行 到了推4?.该方法采用微型钻头及实际岩芯, 的不恰当的参数化,对岩石可钻性的反映是极不 在实验室钻进台上模拟钻进的实际过程.可钻性 准确的 指标可以是穿孔速率、设定时间内的进尺或设定 深度内的时间.但和其他岩芯实验法一样,微钻 收稿日期:2005-06-28修回日期:20060306 基金项目:国家自然科学基金重大项目(Na.50490271)和香港特 法脱离了孔内的温度场、应力场等实际环境,无法 别行政区政府研究基金和香港赛马会慈善基金(Na.HKU7005/ 模拟孔内应力状态,而且,可钻性数据随机、离散、 01E 有限,测试工作滞后于实际钻进,不能随钻随测, 作者简介:谭卓英(1965一),男,教授,博士 周期长费用高网
基于岩石可钻性指标的地层界面识别理论与方法 谭卓英1) 蔡美峰1) 岳中琦2) 谭国焕2) 李焯芬2) 1) 北京科技大学金属矿山高效开采与安全教育部重点实验室, 北京 100083 2) 香港大学土木工程系, 中国香港 摘 要 岩石可钻性指标是石油、矿山及地质部门广泛用于钻头选择和制定生产定额的重要参 数, 但现行可钻性指标的定义及参数获取的实验方法还存在许多问题.通过分析, 重新定义了岩石 的可钻性, 提出了以单位能量下的穿孔速率作为可钻性指标的新概念;基于钻进过程中有效轴压、 转速、穿孔速率和可钻性指标间的耦合关系, 建立了可钻性指标的计算公式.同时, 对新的可钻性 指标在地层识别中的敏感性进行了分析, 阐述了可钻性指标在地层识别中的物理意义.研究表明, 新的可钻性指标克服了传统可钻性指标在判层中存在的盲区, 并可实现沿钻孔剖面的连续判层. 关键词 岩石可钻性;地层界面;识别;钻孔参数;耦合关系 分类号 TU 413.6 +2 收稿日期:2005 06 28 修回日期:2006 03 06 基金项目:国家自然科学基金重大项目( No .50490271) 和香港特 别行政区政府研究基金和香港赛马会慈善基金( No .HKU7005/ 01E) 作者简介:谭卓英( 1965—) , 男, 教授, 博士 1 岩石的可钻性 根据岩石可钻性的定义[ 1 2] , 表征可钻性的 指标可以是岩石的物理力学性质( 如抗压强度 、压 入硬度、点载荷强度 、弹性模量及声波速率等) 、穿 孔速率 、钻头进尺、破碎单位体积的能量(如普氏 捣碎法及巴氏砸碎法)及微钻法的穿孔速率、钻深 及钻时等指标.这些指标大体上可归纳为强度指 标、位移指标及能量指标 . 物理力学性质指标虽然在一定程度上反映了 岩石抵抗破坏或被破碎的能力, 但它们不能反映 钻进时岩石的破碎过程;抗压强度指标, 即使是三 轴抗压强度指标也不能完全模拟钻孔内实际的围 岩应力状态, 且岩石取样也具有很大的离散性, 加 压测试过程及压头与岩石端面的接触情况也与实 际的钻凿条件不一致 ;压入硬度及点载荷强度等 指标, 由于实验本身的限制, 接触面非常狭小, 如 此小的点 、线或面难以代表岩石的整体情况;弹性 模量是通过应力-应变曲线间接获得的, 同样受 到强度指标测试的限制.因而, 不考虑岩石结构 的复杂性以及脱离孔内围压及温度等环境而进行 的不恰当的参数化, 对岩石可钻性的反映是极不 准确的. 声波速率(严格说, 为纵波速率或声波时差) 是通过测井数据获得的.由于岩石本身是一种非 完全弹性介质, 岩石的矿物成分、颗粒大小 、胶结 状态 、孔隙率及松散程度等, 会造成声速差异, 声 波速率也难以反映岩石的实际可钻性. 一定条件下的实际穿孔速率虽然能反映穿透 地层的围岩应力状态以及试件的离散性问题, 但 受地层 、钻头类型及钻进参数的影响, 条件性很 强, 度量标准不准确 . 破碎比能是指破碎单位体积岩石所需要的能 量.一方面, 实际岩石钻孔时, 钻头 、钻杆不仅和 孔壁 、岩屑存在摩擦, 而且还有冲洗液的作用, 其 能量的传递方式与破碎比能实验模拟条件大相径 庭, 因而破碎比能实验模拟不能反映孔底岩石的 应力状态, 同时也不能反映孔内的应力状态 ;另一 方面, 无论是捣碎法还是砸碎法[ 3] , 破岩原理均 属冲击破碎, 而勘探钻进为回转式, 其破岩机理完 全不同, 也难以反映旋转破碎的情况. 微钻法是由 Rollow 提出的一种研究岩石可 钻性的方法, 20 世纪 80 年代在我国石油行业得 到了推广[ 4 5] .该方法采用微型钻头及实际岩芯, 在实验室钻进台上模拟钻进的实际过程 .可钻性 指标可以是穿孔速率 、设定时间内的进尺或设定 深度内的时间.但和其他岩芯实验法一样, 微钻 法脱离了孔内的温度场、应力场等实际环境, 无法 模拟孔内应力状态, 而且, 可钻性数据随机、离散、 有限, 测试工作滞后于实际钻进, 不能随钻随测, 周期长, 费用高[ 6] . 第 28 卷 第 9 期 2006 年 9 月 北 京 科 技 大 学 学 报 Journal of University of Science and Technology Beijing Vol .28 No.9 Sep.2006 DOI :10.13374/j .issn1001 -053x.2006.09.001
。804 北京科技大学学报 2006年第9期 岩屑能量法7是基于能量破碎原理的,其不 H2,则: 足与破碎比能实验模拟法相同. H2-H1_△H A,B法则适用于钻头的抗研磨性设计网.实 Vy=t (2) 际钻进过程中,钻具存在磨损不均,实际钻头磨损 钻头破碎的体积为: 量的体积测量也十分复杂,且在薄层、软地层及磨 蚀性差的地层中,钻具磨损量甚微,因而分级及级 =(D-Di) (3) 差会受到限制,从而影响可钻性分级的精度. 式中,当岩芯钻进时,D2为钻孔外径,与所钻凿地 此外,钻孔录井实时数据已被用来优化采矿 层的岩性有关0;D1为岩芯外径当为破坏性钻 作业参数,新的可钻性指标和概念也不断被提 进时,D1=0. 出9 又设1时刻施加在钻具或钻头上的有效轴压 综上分析,从岩芯实验和原位实测来看,可钻 为T则: 性指标宜以实际钻凿来衡量.因为实际钻凿与地 Te=WoB°cosa十Td-Tu (4) 层、标准的钻凿工具、钻孔方式、孔底环境场以及 式中,WoB为t时刻钻具的重量;a为钻孔轴线方 实际用于钻孔岩石破碎的能量有关,所以实际钻 向与铅直线的夹角.垂直钻孔时,钻孔轴线与铅 凿反映了地层岩性、钻头以及环境的关系 直线重合,α=0:水平钻孔时,钻孔轴线与铅直线 因此岩石的可钻性可定义为在一定的外力 垂直,a=90°.T4Tu分别为t时刻作用于钻具 和钻具条件下岩石抵抗钻头破坏的能力.可钻性 上的下向轴推力及上向调压力. 指标不仅应反映岩石抵抗尖锐工具入侵的能力, 钻机所产生的能量由两部分组成:由钻具重 而且要反映所穿透地层的岩石与钻具间的相互作 力、轴压力及调压力组成的有效轴推力随钻头钻 用关系.无论是冲击还是旋转式破岩,钻头端面 进位移所做的功E:由钻机旋转所做的功Er.根 及侧向与岩石间的相互作用最终可通过能量消耗 据能量守恒原理,钻机所产生的能量用以克服钻 的形式来表现因此可钻性指标应为单位能量下 具与孔壁、钻井液及岩屑之间的摩擦阻力:钻头与 的穿孔速率. 孔底岩石、钻头体侧向与孔壁等的摩擦阻力所需 事实上,尽管每种岩石的破碎比功不同,但在 要的能量E,以及破碎岩石所需要的能量Ep,用 标准条件下特定岩石的破碎比功是不变的.不管 公式表示为: 采用什么样的凿岩工具,只要破碎的表面积和粒 E。十E=Ei十Ep 5) 度分布相同,破碎单位体积的岩石所需消耗的能 则 量就是一样的.也就是说岩石的破碎比功只与 Ep=Ee十Er-Er (6) 输入的能量有关与工具无关.不同的钻凿工具, 在同一地层的岩石中具有不同的穿孔速率,那是 考虑到能量的传递效率,上式可进一步简化 因为不同的钻具对能量的传递效率不同.这进一 为: 步解析了采用单位能量下穿孔速率作为可钻性指 E=K1Ee十K2Ef (7) 标的科学性 式中,K1,K2分别为有效轴推力和转矩所做的功 对岩石破碎的贡献率, 2基于轴压转速一穿孔速率耦合的 从时刻t1到时刻t2的△1时间内,有效轴推 可钻性指标 力和转矩用于破碎岩石所消耗的功分别由下式确 根据可钻性指标的定义,设任意时刻的穿孔 定: 速率为'p,钻孔破碎岩石所消耗的能量为E,则 ET=TeVp△t (8) 可钻性指标K可表示为: E,=MW△t (9) K=台 式中,M为作用于钻头的力矩,N:为钻头转速. (1) 将式(8),(9)代入(7),可得破碎单位体积所 K的物理意义为:在一定条件下,岩石吸收 需的能量,即比能公式为: E,大小的能量破碎单位体积的岩石,并使钻孔 E.=4(KT.Vp+K3MN) (10) 推进一个单位的深度, π(d-di)Vp 若从时刻t1到时刻t2,钻头位移从H1到 式中,d1,d2为钻头的内直径及外直径.同样,当
岩屑能量法 [ 7] 是基于能量破碎原理的, 其不 足与破碎比能实验模拟法相同 . A, B 法则适用于钻头的抗研磨性设计[ 8] .实 际钻进过程中, 钻具存在磨损不均, 实际钻头磨损 量的体积测量也十分复杂, 且在薄层、软地层及磨 蚀性差的地层中, 钻具磨损量甚微, 因而分级及级 差会受到限制, 从而影响可钻性分级的精度. 此外, 钻孔录井实时数据已被用来优化采矿 作业参数, 新的可钻性指标和概念也不断被提 出 [ 9] . 综上分析, 从岩芯实验和原位实测来看, 可钻 性指标宜以实际钻凿来衡量.因为实际钻凿与地 层、标准的钻凿工具 、钻孔方式 、孔底环境场以及 实际用于钻孔岩石破碎的能量有关, 所以实际钻 凿反映了地层岩性、钻头以及环境的关系. 因此, 岩石的可钻性可定义为在一定的外力 和钻具条件下岩石抵抗钻头破坏的能力 .可钻性 指标不仅应反映岩石抵抗尖锐工具入侵的能力, 而且要反映所穿透地层的岩石与钻具间的相互作 用关系.无论是冲击还是旋转式破岩, 钻头端面 及侧向与岩石间的相互作用最终可通过能量消耗 的形式来表现, 因此可钻性指标应为单位能量下 的穿孔速率. 事实上, 尽管每种岩石的破碎比功不同, 但在 标准条件下特定岩石的破碎比功是不变的.不管 采用什么样的凿岩工具, 只要破碎的表面积和粒 度分布相同, 破碎单位体积的岩石所需消耗的能 量就是一样的.也就是说, 岩石的破碎比功只与 输入的能量有关, 与工具无关 .不同的钻凿工具, 在同一地层的岩石中具有不同的穿孔速率, 那是 因为不同的钻具对能量的传递效率不同 .这进一 步解析了采用单位能量下穿孔速率作为可钻性指 标的科学性. 2 基于轴压-转速-穿孔速率耦合的 可钻性指标 根据可钻性指标的定义, 设任意时刻的穿孔 速率为 Vp, 钻孔破碎岩石所消耗的能量为 E s, 则 可钻性指标 K d 可表示为 : K d = Vp Es ( 1) K d 的物理意义为:在一定条件下, 岩石吸收 E s 大小的能量, 破碎单位体积的岩石, 并使钻孔 推进一个单位的深度 . 若从时刻 t 1 到时刻 t 2, 钻头位移从 H1 到 H2, 则 : Vp = H2 -H1 t 2 -t 1 =ΔH Δt ( 2) 钻头破碎的体积 Vb 为: Vb = πΔH 4 ( D 2 2 -D 2 1) ( 3) 式中, 当岩芯钻进时, D2 为钻孔外径, 与所钻凿地 层的岩性有关 [ 10] ;D1 为岩芯外径, 当为破坏性钻 进时, D1 =0 . 又设 t 时刻施加在钻具或钻头上的有效轴压 为 T e, 则 : Te =WOB·cosα+Td -Tu ( 4) 式中, WOB为 t 时刻钻具的重量;α为钻孔轴线方 向与铅直线的夹角 .垂直钻孔时, 钻孔轴线与铅 直线重合, α=0 ;水平钻孔时, 钻孔轴线与铅直线 垂直, α=90°.T d, Tu 分别为 t 时刻作用于钻具 上的下向轴推力及上向调压力 . 钻机所产生的能量由两部分组成 :由钻具重 力、轴压力及调压力组成的有效轴推力随钻头钻 进位移所做的功 E e ;由钻机旋转所做的功 E r .根 据能量守恒原理, 钻机所产生的能量用以克服钻 具与孔壁 、钻井液及岩屑之间的摩擦阻力;钻头与 孔底岩石、钻头体侧向与孔壁等的摩擦阻力所需 要的能量 E f, 以及破碎岩石所需要的能量 E p .用 公式表示为: Ee +E r=Ef +E p ( 5) 则 Ep =E e +Er -E f ( 6) 考虑到能量的传递效率, 上式可进一步简化 为: E p=K1E e +K 2E f ( 7) 式中, K 1, K 2 分别为有效轴推力和转矩所做的功 对岩石破碎的贡献率 . 从时刻 t 1 到时刻 t 2 的 Δt 时间内, 有效轴推 力和转矩用于破碎岩石所消耗的功分别由下式确 定: ET =Te V pΔt ( 8) E r =MN rΔt ( 9) 式中, M 为作用于钻头的力矩, N r 为钻头转速 . 将式( 8), ( 9) 代入( 7) , 可得破碎单位体积所 需的能量, 即比能公式为 : Es = 4( K 1 Te V p +K 2 MN r) π( d 2 2 -d 2 1) V p ( 10) 式中, d1, d 2 为钻头的内直径及外直径.同样, 当 · 804 · 北 京 科 技 大 学 学 报 2006 年第 9 期
Vol.28 No.9 谭卓英等:基于岩石可钻性指标的地层界面识别理论与方法 ·805。 破坏式钻孔时,d2=0. 根据式(14),若钻凿地层从软地层A到硬地 将式(10)代入(1),得可钻性指标的计算公式 层B,则VEA,△E>0. 如下: Ka=KT,'十K,MN 所以式1W的分子兴-兰包小于Q面分母 (11) π(d-d) 因为力矩和有效轴压呈线性关系1?,则可钻性 △E恒大于1.可钻性指标的敏感性系数恒小 1十EN 指标可进一步表示为: 于0. K4=4T.(K1y十KK3N 若钻凿地层从硬(A)到软(B),则V>VA, (12) π(d-d) △V △V>0:而E0.所以,式(14)的分 3可钻性指标对地层识别的敏感性 了兴尝还是恒小于0而分母1计长恒大 于1.可钻性指标的敏感性系数恒小于0. 对于标准化的钻具(钻头)和钻凿方式,在特 此时,如果E<EA,则△E≤<0.所以,公式 定的岩石中,穿孔速率是恒定不变的,且比功为常 量.两个不变量的比值仍是常量.说明在特定的 14的分子兴尝恒大于0面分母1+尝 地层岩性中,可钻性指标所反映的特征值是恒定 的.相反,如果地层岩性发生了改变穿孔速率和 =恒小于1.可钻性指标的敏感性系数恒大于 EA 破碎比能也将随之发生改变.由于穿孔速率随岩 0 石强度和硬度指标的增高而降低,破碎比能随岩 综上分析,即使穿孔速率相同,可钻性指标的 石强度及硬度指标的增高而增大,所以,穿孔速 敏感性系数也不可能等于0.可见,在地层岩性不 率与比能随地层岩石的物理力学性质的变化是互 同,但物理力学特性相似,穿孔速率相同的地层中 逆的.可见,穿孔速率与比能的比值一可钻性 穿孔时,可钻性指标的敏感性也是显著的,同样可 指标的梯度降一将随岩石强度及硬度指标的增 以对地层进行识别.以上也进一步说明了用穿孔 大而减小,敏感性是非常显著的.可钻性指标对 速率作为可钻性指标在理论和应用上存在的问 地层识别的分辨能力可由敏感性进行检验. 题 根据定义,利用公式(1,设在深度H或t时 刻,钻头从A地层到B地层,穿孔速率由'。改变 4基于可钻性指标的地层识别过程 为V,十△Vp破碎比能由Ep改变为E,十△Ep 在地层钻进中,有效轴压T。钻头转速N。 则敏感性K,为: 穿透速率'p均可以看作是孔深h的函数.因 △'-△E K.-K4.B-K4A VA EA 此可钻性指标可用钻孔深度h的函数表示.设 (14) K d.A 1+ K=f(h),则f川h)为隐函数. EA 显然,可钻性指标变化的程度,可用其在单位
破坏式钻孔时, d2 =0 . 将式( 10)代入( 1), 得可钻性指标的计算公式 如下 : K d = 4( K 1 Te V p +K 2 MN r) π( d 2 2 -d 2 1) ( 11) 因为力矩和有效轴压呈线性关系[ 11 12] , 则可钻性 指标可进一步表示为 : K d = 4 Te (K 1 V p +K 2K 3N r) π( d 2 2 -d 2 1) ( 12) 式中, K 3 为力矩与轴压之间的比例系数. 式( 12)可进一步用自然对数表示为 : ln( K d) =ln 4 T e( K 1 Vp +K 2K 3Nr) π( d 2 2 -d 2 1) ( 13) 式( 12) 即是有效轴压、转数和穿孔速率耦合 的可钻性指标预测模型 .一旦 K 1, K 2 及 K 3 确 定, 就可直接根据钻进工作参数确定所穿透地层 的可钻性指标. 从式( 12)可知, 对于一定的钻头而言, 所穿透 地层岩石的可钻性由有效轴压、转速和穿孔速率 确定 .也就是说, 有效轴压、转速和穿孔速率的变 化将反映地层岩性的变化, 根据这些参数的变化, 可以实现对地层的实时识别 .这为 DPM 系统监 测数据 [ 13] 的地层识别奠定了重要的理论基础 . 3 可钻性指标对地层识别的敏感性 对于标准化的钻具(钻头)和钻凿方式, 在特 定的岩石中, 穿孔速率是恒定不变的, 且比功为常 量.两个不变量的比值仍是常量 .说明在特定的 地层岩性中, 可钻性指标所反映的特征值是恒定 的.相反, 如果地层岩性发生了改变, 穿孔速率和 破碎比能也将随之发生改变.由于穿孔速率随岩 石强度和硬度指标的增高而降低, 破碎比能随岩 石强度及硬度指标的增高而增大 .所以, 穿孔速 率与比能随地层岩石的物理力学性质的变化是互 逆的.可见, 穿孔速率与比能的比值———可钻性 指标的梯度降———将随岩石强度及硬度指标的增 大而减小, 敏感性是非常显著的 .可钻性指标对 地层识别的分辨能力可由敏感性进行检验. 根据定义, 利用公式( 1) , 设在深度 H 或 t 时 刻, 钻头从 A 地层到 B 地层, 穿孔速率由 Vp 改变 为 V p +ΔV p, 破碎比能由 E p 改变为 E p +ΔE p, 则敏感性 K s 为 : K s = K d, B -K d, A K d, A = ΔV p VA - ΔE s EA 1 + ΔEs E A ( 14) 根据式( 14), 若钻凿地层从软地层 A 到硬地 层 B, 则 V B EA, ΔEs >0 . 所以, 式( 14)的分子 ΔVp V A - ΔEs E A 恒小于 0, 而分母 1 + ΔE s EA 恒大于 1 .可钻性指标的敏感性系数恒小 于 0 . 若钻凿地层从硬(A) 到软( B), 则 VB >VA, ΔV p >0 ;而 EB E A, 则 ΔE s >0 .所以, 式( 14)的分 子 ΔV p VA - ΔE s EA 还是恒小于 0, 而分母 1 + ΔE s EA 恒大 于 1 .可钻性指标的敏感性系数恒小于 0 . 此时, 如果 EB <EA , 则 ΔE s <0 .所以, 公式 ( 14) 的分子 ΔV p VA - ΔE s EA 恒大于 0, 而分母 1 + ΔEs E A = EB E A 恒小于 1 .可钻性指标的敏感性系数恒大于 0 . 综上分析, 即使穿孔速率相同, 可钻性指标的 敏感性系数也不可能等于0 .可见, 在地层岩性不 同, 但物理力学特性相似, 穿孔速率相同的地层中 穿孔时, 可钻性指标的敏感性也是显著的, 同样可 以对地层进行识别.以上也进一步说明了用穿孔 速率作为可钻性指标在理论和应用上存在的问 题. 4 基于可钻性指标的地层识别过程 在地层钻进中, 有效轴压 T e, 钻头转速 N r, 穿透速率 Vp 均可以看作是孔深 h 的函数.因 此, 可钻性指标可用钻孔深度 h 的函数表示.设 K d =f ( h) , 则 f ( h)为隐函数. 显然, 可钻性指标变化的程度, 可用其在单位 Vol.28 No.9 谭卓英等:基于岩石可钻性指标的地层界面识别理论与方法 · 805 ·
。806 北京科技大学学报 2006年第9期 孔深上的变化率来表征.在K一h曲线中,即为 式(20)反映了从孔深h:到h+1时,K一h曲 曲线斜率的变化或梯度的改变.如图1,设从孔深 线方向的变化.如果孔深发生的变化量为△h i位置变化到i十1位置,则变化率为: 时,K一h曲线的方向改变了arctan(△Ga),则说 △Kai Ka.i+1-Kdi 明地层的岩性发生了显著变化.可以判为另一属 △h:-hiti-hi (16) 性的地层. 当△h0时,可用f(h)的导数Kd表示为: 在地层界面处,岩性的改变有两种情况:一是 K典=f (17) 发生根本性的改变岩体的物质组成、结构等完全 不同,物理力学性质截然不同.因此,在界面处岩 由于f(h)为隐函数,因此式(17)可进一步用偏导 体抵抗机械破坏的性质也完全不同.在K一h曲 数表示为: 线上,表现为曲线的方向发生突变.二是渐变形 K=f(h)=h防h dTa.dN:.dvp (18) 式物质分异面并不明显,在界面附近存在过渡带 或区.在K一h曲线上,表现为曲线沿原来的方 式(18)确定了可钻性指标随钻孔深度变化的 向走向,没有明显的改变,此外,结构面、滑移面 梯度.K的物理意义为:在某一地层中,当孔深 以及水、气、油等的与岩体的分界面,也可视为物 的变化趋于无限小时可钻性指标的变化.K:的 质分异面.广义地,可以归为第一种情况. 几何意义为:Ka一h曲线的斜率,其角度为a= 地层界面识别参数△G的设置必须满足突 arctan(Ka). 变界面和渐变界面的有效标识.理论上,△G的 Ka 设置不受任何限制,可设置为无限小.△G越小, 精度越高.但从应用的角度,△G设置太小,标识 的界面多,不能把主界面和次界面有效地分开. 因此,△G的设置以满足研究目标或工程要求为 前提,通过实际钻进标定后确定. 传统的可钻性分级只针对岩石,且钻孔的可 △h 钻孔深度 钻性剖面是间断的和静态的.DPM系统对岩体 的可钻性分级是连续的、动态的,可以获得钻孔剖 图1可钻性指标随深变化的几何解析 面的可钻性曲线. Fig.I Geometrical analytic graphics of drillability index with 除了根据可钻性指标及其级值将岩石加以区 borehole depth 别外,还须对物质分异面以外的其他界面进行识 根据梯度变化的大小可对所钻地层进行区 别.这些界面包括结构面、滑移界面以及岩溶空 划.设识别地层的分辨率为△h,同一地层内许可 洞、硐室、地下水、石油、天然气等固一液相、固气 的可钻性指标的变化幅度一级值,为△G,则 相界面,包括了所有穿透的地层,如表土层钻进. 由公式(18)得识别公式为: 因此,可钻性指标比传统的概念涵盖的范围更宽. I△Kl=|f(△h)l=lf'(h+△h)-f'(h)l≥△Ga 5结论 (19) 这里,分辨率是指系统能识别的最小厚度. 通过以上分析可知,新的可钻性指标对地层 当△h0时,为连续、动态识别模式.△Ga的物 物理力学性质、钻具工作参数及比能的变化是敏 理意义为:当孔深发生△h的变化时,属于同一岩 感的,其对地层的识别是动态和连续的.因此,新 的可钻性分级可实现沿钻孔剖面的连续识别. 性地层的可钻性指标所允许变化的最大幅度.若 超出了△Ga值,则属于另一岩性的地层.其几何 参考文献 意义为:在Kh曲线中,当自变量发生的变化为 【)W hite C G.岩石可钻性指数.边蔚奇译.北京:煤炭工业 △h时,曲线斜率变化所允许的最大值. 出版社,1980 根据图1,式(19)可用角度表示为: 【2)坦加耶夫1A.岩石的可钻性和可爆性.王维俊译.北京: 治金工业出版社,1987 |△adl=|arctan(a2)-arctan(a)l≥arctan(△Gd) 【到徐小荷,余静.岩石破碎学.北京:煤炭工业出版社,1987 (20) 【4史晓亮,段隆军,王蕾。等.微钻法进行岩石可钻性分级
孔深上的变化率来表征.在 K d-h 曲线中, 即为 曲线斜率的变化或梯度的改变 .如图1, 设从孔深 i 位置变化到 i +1 位置, 则变化率为 : ΔK d, i Δhi = Kd, i +1 -K d, i hi +1 -hi ( 16) 当 Δh ※0 时, 可用 f ( h)的导数 K′d 表示为 : K′d =limΔh ※0 ΔK d Δh =f′( h) ( 17) 由于 f ( h )为隐函数, 因此式( 17)可进一步用偏导 数表示为 : K′d =f′( h) = Td h · Nr h · V p h ( 18) 式( 18)确定了可钻性指标随钻孔深度变化的 梯度.K′d 的物理意义为:在某一地层中, 当孔深 的变化趋于无限小时可钻性指标的变化 .K′d 的 几何意义为:K d -h 曲线的斜率, 其角度为 α= arctan( K′d) . 图 1 可钻性指标随孔深变化的几何解析 Fig.1 Geometrical analytic graphics of drillability index with borehol e depth 根据梯度变化的大小可对所钻地层进行区 划.设识别地层的分辨率为 Δh, 同一地层内许可 的可钻性指标的变化幅度———级值, 为 ΔGd, 则 由公式( 18)得识别公式为 : ΔK′d = f′( Δh) = f′( hi +Δh) -f′( hi) ≥ΔGd ( 19) 这里, 分辨率是指系统能识别的最小厚度. 当Δh ※0 时, 为连续、动态识别模式 .ΔGd 的物 理意义为:当孔深发生 Δh 的变化时, 属于同一岩 性地层的可钻性指标所允许变化的最大幅度.若 超出了 ΔGd 值, 则属于另一岩性的地层 .其几何 意义为 :在 K dh 曲线中, 当自变量发生的变化为 Δh 时, 曲线斜率变化所允许的最大值. 根据图 1, 式( 19) 可用角度表示为 : Δαd = arctan( α2) -arctan( α1) ≥arctan( ΔGd) ( 20) 式( 20)反映了从孔深 hi 到 hi +1时, K d-h 曲 线方向的变化 .如果孔深发生的变化量为 Δh 时, K d-h 曲线的方向改变了 arctan( ΔGd) , 则说 明地层的岩性发生了显著变化, 可以判为另一属 性的地层 . 在地层界面处, 岩性的改变有两种情况 :一是 发生根本性的改变, 岩体的物质组成、结构等完全 不同, 物理力学性质截然不同.因此, 在界面处岩 体抵抗机械破坏的性质也完全不同 .在 K d-h 曲 线上, 表现为曲线的方向发生突变.二是渐变形 式, 物质分异面并不明显, 在界面附近存在过渡带 或区.在 K d -h 曲线上, 表现为曲线沿原来的方 向走向, 没有明显的改变 .此外, 结构面、滑移面 以及水、气、油等的与岩体的分界面, 也可视为物 质分异面 .广义地, 可以归为第一种情况. 地层界面识别参数 ΔGd 的设置必须满足突 变界面和渐变界面的有效标识 .理论上, ΔGd 的 设置不受任何限制, 可设置为无限小.ΔGd 越小, 精度越高 .但从应用的角度, ΔGd 设置太小, 标识 的界面多, 不能把主界面和次界面有效地分开. 因此, ΔGd 的设置以满足研究目标或工程要求为 前提, 通过实际钻进标定后确定. 传统的可钻性分级只针对岩石, 且钻孔的可 钻性剖面是间断的和静态的 .DPM 系统对岩体 的可钻性分级是连续的、动态的, 可以获得钻孔剖 面的可钻性曲线. 除了根据可钻性指标及其级值将岩石加以区 别外, 还须对物质分异面以外的其他界面进行识 别.这些界面包括结构面、滑移界面以及岩溶空 洞、硐室、地下水、石油、天然气等固-液相 、固-气 相界面, 包括了所有穿透的地层, 如表土层钻进. 因此, 可钻性指标比传统的概念涵盖的范围更宽. 5 结论 通过以上分析可知, 新的可钻性指标对地层 物理力学性质、钻具工作参数及比能的变化是敏 感的, 其对地层的识别是动态和连续的 .因此, 新 的可钻性分级可实现沿钻孔剖面的连续识别 . 参 考 文 献 [ 1] White C G.岩石可钻性指数.边蔚奇译.北京:煤炭工业 出版社, 1980 [ 2] 坦加耶夫 И А.岩石的可钻性和可爆性.王维俊译.北京: 冶金工业出版社, 1987 [ 3] 徐小荷, 余静.岩石破碎学.北京:煤炭工业出版社, 1987 [ 4] 史晓亮, 段隆军, 王蕾, 等.微钻法进行岩石可钻性分级. · 806 · 北 京 科 技 大 学 学 报 2006 年第 9 期
Vol.28 No.9 谭卓英等:基于岩石可钻性指标的地层界面识别理论与方法 ·807。 金刚石与磨料磨具工程,202(3):32 2001,15(3):177 【习张厚美,薛佑刚.岩石可钻性方法探讨.钻采工艺,1999, 【10谭卓英,赖海辉.冲击回转式凿岩扭矩的分析与计算.矿 22(1):10 业研究与开发,1993(4):19 Spoar J R.Ledgerwood L W,Christensen H.t al.Forma 【1山徐军,李春兰,卢文发,等.旋转机械的功率在线测试. tion compressive strength estimates for predicting drillabilities 热能动力工程,1999,14:135 and PDC hit selec tion.Proc Dril ling Conf,1995:569 【1滕子军.用钻进参数仪实时判层.煤田地质与勘探, 【刁杜镰,杨世良。岩石可钻性能量法现场实验研究。西南石 2000.28(2):58 油学院学报,1994,16(4):66 13]Tan Z Y.Report on Field Tests at Lam Tin Ho Man Tin [8张绍和。一种新的岩石可钻性分析方法研究.探矿工程, Sites,Drilling Process Monitor System (DPM)for Hydraulc 1999(6:32 Drill Rig.Hong Kong:Hong Kong University,Hong Kong 9 Liu H.Yin KK.Analysis and interpretation of monitored ro Jockey Club.2002 tary blasthole drill data.Intl J Surf Min Reclam Environ. Theory and approach of identification of ground interfaces based on rock drilla- bility index TAN Zhucy ing,CAI Meifeng",Z.Q.Yue2),L.G.Tham2,C.F.Lee2 1)State Key Laboratory of High Efficient Mining and Safety of Metal Mines(University of Science and Technology Beijing).Ministry of Edu cation.Beijing 100083.China 2)Department of Civil Engireering.Hong Kong University,Pokfulam Road,Hong Kong.China ABSTRACT Rock drillability index is a very key parameter in selection of drill bit type and determinat ion of productivity in petroleum,mining and geology.Unfortunately,there are many limits in the current defi- nition as well as experimental methods.Drillability is redefined and a new concept of drillability index is brought out from analysis.Under the new concept,the drillability index is defined as penetration rate un- der specific energy.Based on the coupling relationship among effective thrust,rotation speed,penetrat ion rate and drillability index,a calculation formula is established.Besides,the sensitivity of the drillability in- dex in identification of ground layer is analyzed and its physical signification is ex patiated also.The result shows that the new index overcomes the blind area in the traditional concept and can be used in continuous identification of ground layer along bo rehole profile. KEY WORDS rock drillability:ground interface;identification;drilling parameters;coupling relationship
金刚石与磨料磨具工程, 2002( 3) :32 [ 5] 张厚美, 薛佑刚.岩石可钻性方法探讨.钻采工艺, 1999, 22( 1) :10 [ 6] Spoar J R, Ledgerw ood L W, Christensen H, et al.Formation compressive strength estimates for predi cting drillabilities and PDC bit selection.Proc Drilling Conf, 1995:569 [ 7] 杜镰, 杨世良.岩石可钻性能量法现场实验研究.西南石 油学院学报, 1994, 16( 4) :66 [ 8] 张绍和.一种新的岩石可钻性分析方法研究.探矿工程, 1999( 6) :32 [ 9] Liu H, Yin K K .Analysis and interpretation of monit ored rot ary blasthole drill data .Intl J Surf Min Reclam Environ, 2001, 15( 3) :177 [ 10] 谭卓英, 赖海辉.冲击回转式凿岩扭矩的分析与计算.矿 业研究与开发, 1993( 4) :19 [ 11] 徐军, 李春兰, 卢文发, 等.旋转机械的功率在线测试. 热能动力工程, 1999, 14:135 [ 12] 滕子军.用钻进参数仪实时判层.煤田地质与勘探, 2000, 28( 2) :58 [ 13] Tan Z Y.Report on Field Tests at Lam Tin &Ho Man Tin Sites, Drilling Process Monitor System ( DPM) for Hydraulic Drill Rig .Hong Kong :Hong Kong University, Hong Kong Jockey Club, 2002 Theory and approach of identification of g round interfaces based on rock drillability index TAN Zhuoy ing 1) , CAI Meifeng 1) , Z .Q .Y ue 2) , L .G .Tham 2) , C .F .Lee 2) 1 ) St at e Key Laborat ory of High-Efficient Mining and S afety of Metal Mines ( University of Science and Technology Beijing) , Ministry of Education, Beijing 100083, China 2) Department of Ci vil Engineering, Hong Kong University, Pokfulam Road, Hong Kong, China ABSTRACT Rock drillability index is a very key parameter in selection of drill bit ty pe and determination of productivity in petroleum, mining and geology .Unfortunately , there are many limits in the current definition as well as experimental methods.Drillability is redefined and a new concept of drillability index is brought out from analysis .Under the new concept, the drillability index is defined as penetration rate under specific energ y .Based on the coupling relationship among effective thrust, ro tation speed, penetration rate and drillability index, a calculation formula is established .Besides, the sensitivity of the drillability index in identification of ground layer is analyzed and its physical signification is ex patiated also .The result shows that the new index overcomes the blind area in the traditional concept and can be used in co ntinuous identification of g round layer along bo rehole profile . KEY WORDS rock drillability ;g round interface;identification ;drilling parameters ;coupling relationship Vol.28 No.9 谭卓英等:基于岩石可钻性指标的地层界面识别理论与方法 · 807 ·