电路 第9章正弥稳恋电路的分析 内容提要及本章重点: 内容提要 9.1 阻抗和导纳 9.3正弦獍态电路的分析 9.4正弦税电路的功率 9.5复功率 9.6最大功率传输 页
第9章 正弦稳态电路的分析 首 页 9.3 正弦稳态电路的分析 9.4 正弦稳态电路的功率 9.5 复功率 9.6 最大功率传输 9.1 阻抗和导纳 一、内容提要及本章重点: ·内容提要
正猴稳态电路的会并运一 重点: 1.阻抗和导纳; 正弦稳态电路的分析; 3.正弦稳态电路的功率分析;
2. 正弦稳态电路的分析; 3. 正弦稳态电路的功率分析; ⚫ 重点: 1. 阻抗和导纳; 返 回
正猴稳态电路的会并运一 二、参考书 1李翰荪著,电路分析基础(第4版),北京 高等教育出版社 2江辑光,刘秀成主编,电路原理(第2版), 叱京:清华大学出版社 3王勇、龙建忠等编著,电路理论基础,北京 科学出版社
二、参考书: 1.李翰荪著,电路分析基础(第4版),北京: 高等教育出版社 2.江辑光,刘秀成主编,电路原理(第2版), 北京:清华大学出版社 3.王勇、龙建忠等编著,电路理论基础,北京: 科学出版社
正猴稳电的分世一 91阻抗和导纳 1.阻抗正弦稳态情况下 无源 i线性 网络 def Z|∠@2 欧姆定律的相 量飛式 2=02阻抗模 0=Vn-V阻抗角 「返回「上页〖下页
9.1 阻抗和导纳 1. 阻抗 正弦稳态情况下 I U Z + - 无源 线性 网络 I U + - = = Z φz I U Z | | def z = u − i = I U Z 阻抗模 阻抗角 欧姆定律的相 量形式 返 回 上 页 下 页
y=电路 正猴稳态电路的会并运一 当无源网络内为单个元件时有: R C U L R J jX JOL=jX 念表明z可以是实数,也可以是虚数。 X=OL OC 「上页「下页
当无源网络内为单个元件时有: R I U Z = = L XL I U Z = = j = j X C I C U Z j 1 = = −j = Z 可以是实数,也可以是虚数。 I C U + - 上 页 下 页 I U R + - I L U + - 表明 返 回 1 , X X L C L c = − =
电路 正猴稳态电路的会并运一 2.RLC串联电路 R R JOL ++ t u R U R u o C OC KVL: U=UR+UL +UC=RI+JoL I-yoc IR+jOL--J=IR+j(X +XOJI (R+j) O0 2==R+10-j=R+jX=z∠9 「返回「上页〖下页
2. RLC串联电路 KVL: . . . . . . . 1 j j I C U UR UL UC RI L I = + + = + − I R X X I C R L L C )] [ j( )] 1 =[ + j( − = + + R X I = ( + j ) R X Z z C R L I U Z = = + − = + j = 1 j j 上 页 下 页 L C R u uL uC i + - + - + - + - uR R + - + - + - + - . I j L U UL U C . jC 1 UR 返 回
电路 正猴稳在电路的会折对一 Z—复阻抗;|2—复阻抗的模;z-阻抗角;R 电阻(阻抗的实部);X电抗(阻抗的虛部)。 IZFVR2+x2 转换关系 P. arctan R 「R=|Zcos02 或 X=Sino 阻抗三角形 R 返回上页下页
Z — 复阻抗;|Z| —复阻抗的模;z —阻抗角; R — 电阻(阻抗的实部);X—电抗(阻抗的虚部)。 转换关系: arctan | | 2 2 = = + R X φ Z R X z 或 R=|Z|cosz X=|Z|sinz 阻抗三角形 |Z| R X z z u i I U Z = − = 返 回 上 页 下 页
y=电路 正猴稳态电路的会并运一 分析R、L、C串联电路得出 (1)Z-R+(mL-10C)=2∠q2为复数,称复阻抗 (2)OL>1oC,X>0,q2>0,电路为感性, 电压超前电流。 相量图:一般选电流为参考向量,W=0 电压 U=+U=V0+(=U0 三角 形 等效电路 R ⑦D 「返回「上页〖下页
I 分析 R、L、C 串联电路得出: (1)Z=R+j(L-1/C)=|Z|∠z 为复数,称复阻抗 (2)L > 1/C ,X>0, z>0,电路为感性, 电压超前电流。 i = 0 上 页 下 页 相量图:一般选电流为参考向量, UC UR UL U z UX 电压 三角 形 2 L C 2 2 2 U U U U (U U ) = R + X = R + − j Leq UX + R - + - + UR - 等效电路 返 回
电路 正猴稳态电路的会并运一 (3)OL<l/oC,X0,q2<0,电路为容性, 电压落后电流。=OH+U=NU+U=UD 等效电路 R Oc (4)OL=10C,X=0,g2=0,电路为电阻性, 电压与电流同相 等效电路 RU 「返回「上页〖下页
I (3)L<1/C, X<0, z <0,电路为容性, 电压落后电流。 UC UR UL U z UX 等效电路 上 页 下 页 UX eq j 1 C R + - + - + UR - . U I (4)L=1/C ,X=0, z=0,电路为电阻性, 电压与电流同相。 I UR UL UC R + - + - I UR 等效电路 U 2 2 2 2 ( ) U = UR +UX = UR + UC −UL 返 回
电路 正猴稳电的分世一 例已知:R=152,L=0.3mH,C=0.2uE l=5√2c0(ot+60),f=3×10Hz 求i,l,l,lc R 10 L 解画出相量模型 U=5∠60°V jOL=j2π×3×10×0.3×10 j56.5g2 126.59 OC·2汇×3×104×02×106 z=R+oL-j-=15+j565-j26.5 C 33.54∠63.4°g2 「返回「上页〖下页
例 已知:R=15, L=0.3mH, C=0.2F, 5 2cos( 60 ), 3 10 Hz . 4 u = t + f = 求 i, uR , uL , uC . 解 画出相量模型 5 60 V U = C Z R L 1 = + j − j j56.5Ω j j2π 3 10 0.3 10 4 3 = = − L j26.5Ω 2π 3 10 0.2 10 1 j 1 j 4 6 = − − = − − C =15 + j56.5 − j26.5 33.54 63.4 Ω o = 上 页 下 页 L C R u uL uC i + - + - + - + - uR R + - + - + - + - . I j L U UL U C . jC 1 UR 返 回