点击切换搜索课件文库搜索结果(662)
文档格式:PPT 文档大小:1.38MB 文档页数:29
一、隐函数的导数 二、对数求导法 三、由参数方程所确定的函数的导数 四、相关变化率 五、小结思考题
文档格式:PPT 文档大小:590KB 文档页数:57
导数的概念 在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即 导数。 本章将通过对实际问题的分析,引出微分学中 两个最重要的基本概念——导数与微分,然后再 建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文档格式:PPT 文档大小:485KB 文档页数:26
第三节导数 函数随自变量的瞬时变化率 一、导数的定义 二、导数的几何意义 三、导函数 四、高阶导数 五、小结 六、练习
文档格式:PPT 文档大小:1.02MB 文档页数:27
一、引例 二、导数的定义 三、导数的几何意义 四、函数的可导性与连续性的关系 五、单侧导数
文档格式:PPT 文档大小:653KB 文档页数:26
4.7导数在经济中的应用 导数在工程、技术、科研、国防、医学、环保和经济管理等许多领域都有十分广泛的应用.下面介绍导数(或微 分)在经济中的一些简单的应用. 一.边际分析与弹性分析 边际和弹性是经济学中的两个重要概念.用导数来研 究经济变量的边际与弹性的方法,称之为边际分析与弹性 分析. 1边际函数
文档格式:PPT 文档大小:653KB 文档页数:26
导数在工程、技术、科研、国防、医学、环保和经济管理等许多领域都有十分广泛的应用.下面介绍导数(或微分)在经济中的一些简单的应用. 一、边际分析与弹性分析 边际和弹性是经济学中的两个重要概念.用导数来研 究经济变量的边际与弹性的方法,称之为边际分析与弹性分析 1边际函数
文档格式:PPT 文档大小:587KB 文档页数:57
在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即 导数。 本章将通过对实际问题的分析,引出微分学中 两个最重要的基本概念导数与微分,然后再 建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文档格式:PPT 文档大小:535.5KB 文档页数:29
偏导数 我们已经知道一元函数的导数是一个很重 要的概念,是研究函数的有力工具,它反映了该 点处函数随自变量变化的快慢程度。对于多元函 数同样需要讨论它的变化率问题。虽然多元函数 的自变量不止一个,但实际问题常常要求在其它 自变量不变的条件下,只考虑函数对其中一个自 变量的变化率,因此这种变化率依然是一元函数 的变化率问题,这就是偏导数概念,对此给出如 下定义
文档格式:DOC 文档大小:113.5KB 文档页数:4
第四节初等函数的求导问题、双曲函数与反双 1.常数和基本初等函数的导数公式 2.函数的和、差、积、商的求导法则 3.复合函数的求导法则 4.双曲函数与反双曲函数的导数
文档格式:PPT 文档大小:2.84MB 文档页数:170
第一节 导数的概念 第二节 函数的和、差、积、商的求导法则 一、和、差、积、商的求导法则 二、例题分析 三、小结 第三节 反函数与复合函数的求导法则 一、反函数的导数 二、复合函数的求导法则 三、小结 第四节 初等函数的求导问题 双曲函数与反双曲函数的导数 一、初等函数的求导问题 二、双曲函数与反双曲函数的导数 三、小结 第五节 高阶导数 一、高阶导数的定义 二、 高阶导数求法举例 三、小结 第六节 隐函数的导数由参数方程所确定的函数的导数相关变化率 一、隐函数的导数 二、对数求导法 三、由参数方程所确定的函数的导数 四、相关变化率 五、小结 第七节 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、微分形式的不变性 七、小结 第八节 微分在近似计算中的应用 一、计算函数增量的近似值 二、计算函数的近似值 三、误差估计 四、小结
首页上页1617181920212223下页末页
热门关键字
搜索一下,找到相关课件或文库资源 662 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有