点击切换搜索课件文库搜索结果(6692)
文档格式:PDF 文档大小:408.15KB 文档页数:49
函数极值与Fermat引理 定义5.1.1 设 f x( )在(, ) a b 上有定义, 0 x ab ∈(,),如果存在点 x0的 某一个邻域 ),(),( 0 δ ⊂ baxO ,使得 fx fx () ( ) ≤ 0 , ),( ∈ xOx 0 δ , 则称x0是 f x( )的一个极大值点, f x( ) 0 称为相应的极大值
文档格式:PDF 文档大小:334.08KB 文档页数:40
换元积分法 换元积分法可以分成两种类型: ⑴ 第一类换元积分法 在不定积分 f ( ) x x ∫ d 中,若 f x( )可以通过等价变形化成
文档格式:PDF 文档大小:305.46KB 文档页数:46
从实例看微分与积分的联系 到目前为止,我们已详细介绍了微分与积分(这里专指定积分) 的基本概念,但还不曾涉及微分与积分之间的任何联系。事实上,揭 示微分与积分之间的内在联系是需要许多预备知识的。现在这些预备 知识已经基本具备,可以为这两个重要的概念建立桥梁了
文档格式:PPT 文档大小:1.67MB 文档页数:56
偏导数 定义 12.1.1 设 D 2 R 为开集, z f x y x y =  ( , ), ( , ) D 是定义在 D 上的二元函数,( , ) 0 0 x y D 为一定点
文档格式:PPT 文档大小:753.5KB 文档页数:24
链式规则 设z=f(x,y)(x,y)∈D,是区域D,CR2上的二元函数,而 g:D→R2, (u,v)→(x(u,v),y(uv) 是区域DCR2上的二元二维向量值函数。如果g的值域g(D)=D 那么可以构造复合函数 =fog= f[x(u,v), y(u,v), (u,).o 复合函数有如下求偏导数的法则
文档格式:PPT 文档大小:1.25MB 文档页数:44
前面讨论的函数大多是z=f(x,y)形式,如=xy和z=√x2+y2等 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler方程 F(x,y)=y-x-Eny=0,0
文档格式:PPT 文档大小:916KB 文档页数:31
空间曲线的切线和法平面 一条空间曲线可以看成一个质点在空间运动的轨迹。取定一个直 角坐标系,设质点在时刻t位于点P(x()y()=(t)处,即它在任一时刻 的坐标可用 (x=x(t)
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
文档格式:PPT 文档大小:1.72MB 文档页数:53
Green公式 设L为平面上的一条曲线,它的方程是r(t=x(t)i+y(t)j,at≤ 如果r(a)=r(B),而且当t,t2∈(a,B),t≠t2时总成立r(t)≠r(t2),则称 L为简单闭曲线(或 Jordan曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
首页上页328329330331332333334335下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6692 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有