点击切换搜索课件文库搜索结果(4442)
文档格式:DOC 文档大小:126KB 文档页数:3
一、线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元 素a,和数域P中任意数k,都有 A(a+B)=(a)+A(B);
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
文档格式:PPT 文档大小:95.5KB 文档页数:7
欧拉方程 一、欧拉方程 形如 的方程(其中P1,P2…Pn为常数)叫欧拉方程. 特点:各项未知函数导数的阶数与乘积因子自 变量的方次数相同. 解法:欧拉方程是特殊的变系数方程,通过变 量代换可化为常系数微分方程
文档格式:DOC 文档大小:149KB 文档页数:4
作为因式分解定理的一个特殊情形,有每个次数≥1 的有理系数多项式都能 分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具 体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是 否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的
文档格式:DOC 文档大小:154KB 文档页数:3
2.1.1向量和m维向量空间的定义及性质 定义(向量)设K是一个数域。K中m个数a1a2,m所组成的一个m元有序数组称为一个m维向量
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:53.5KB 文档页数:2
现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个 数相等的情形
首页上页437438439440441442443444下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4442 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有