点击切换搜索课件文库搜索结果(5312)
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
文档格式:PDF 文档大小:200.72KB 文档页数:32
反常积分的 Cauchy收敛原理 下面以∫厂f(x)dx为例来探讨反常积分敛散性的判别法。 由于反常积分。f(x)dx收敛即为极限mJf(x存在,因此对 其收敛性的最本质的刻画就是极限论中的 Cauchy收敛原理,它可以 表述为如下形式:
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PDF 文档大小:513.63KB 文档页数:29
定积分概念的导出背景 1609年至1619年间,德国天文学家Kepler提出了著名的“行星运 动三大定律”: ⑴行星在椭圆轨道上绕太阳运 动,太阳在此椭圆的一个焦点上
文档格式:PDF 文档大小:183.23KB 文档页数:20
带 Peano余项的Tay1or公式 定理5.3.1(带 Peano余项的 Taylor公式)设f(x)在x处有n阶 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立
文档格式:PDF 文档大小:196.01KB 文档页数:20
复合函数求导法则 定理4.4.1 (复合函数求导法则) 设函数u gx = ( )在 x x = 0可导, 函数 y fu = ( )在u u gx = 0 0 = ( )处可导,则复合函数 y f gx = ( ( ))在 x x = 0可 导,且有 [ ( ))] ( ) ) f gx f u g x x x ( ′ = ′ ′( = 0 0 0 = f gx g x ′( )) ) ( ′( 0 0
文档格式:PDF 文档大小:223.6KB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x0 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞0、-∞等情况
文档格式:PDF 文档大小:268.56KB 文档页数:32
Fourier 级数的分析性质 为简单起见,假定 f x( )的周期为2π。 首先,利用 Riemann 引理可以直接得出 定理 16.3.1 设 f x( )在[−π,π]上可积或绝对可积,则对于 f x( )的 Fourier 系数an与bn,有
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
文档格式:PDF 文档大小:236.62KB 文档页数:26
Beta函数 形如 B(p,q)=x-(1-x)-dx 的含参变量积分称为Beta函数,或第一类 Euler积分。 先讨论它的定义域。将Beta函数写成 B(, 9)=(d-x)dx+ x-(1-x)-dx, 当x→0时,x-(1-x)-~x-1,所以只有当p>0时右边第一个反常积 分收敛
首页上页511512513514515516517518下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5312 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有