点击切换搜索课件文库搜索结果(8512)
文档格式:PDF 文档大小:0.98MB 文档页数:292
本书的内容在化学基本理论和基本知识方面主要包括热化学,化学反应的方向、程度和速率,水化学,电化学,物质结构基础以及金属元素化学,非金属元素化学,有机高分子化合物等;在联系工程实际方面主要包括能源、大气污染、水污染、金属腐蚀及防止、金属材料及表面处理、非金属材料、有机高分子材料及改性等。在内容安排上,全书在基本理论和基本知识方面主要贯穿两条主线。前一条是从宏观的热化学开始,引入一些化学热力学和化学动力学基础,并在水化学和电化学中予以应用。后一条是从微观的物质结构基础开始,联系周期系,重点阐述一些与工科有关的典型物质的性质及应用。这两条主线,既各有其侧重面,又互有关联。同时各章均有侧重联系工程实际的专题,主要是有关能源、环境化学和材料化学方面的内容
文档格式:PPT 文档大小:441.5KB 文档页数:13
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值
文档格式:PPT 文档大小:959.5KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设D上的函数 f (x, y) 具有下述性质:它在D中有界的、可求 面积的子区域上可积。并假设所取的割线 为一条面积为零的曲线
文档格式:PPT 文档大小:1.73MB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f (x) 在点 x 0 的某个邻域中有定义,并且成立 lim x→x0 f (x) = f (x ) 0 , 则称函数 f (x) 在点 x 0 连续,而称 x 0 是函数 f (x) 的连续点
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PDF 文档大小:437.69KB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线 L 上任一点 (, ,) x y z 处的线密度为 ρ (, ,) x y z 。将 L 分成 n 个小曲线段 Li = \,,2,1( ni ),并在 Li 上任取一点 ),,(ξ η ζ iii ,那么当每个Li的长度Δ si 都很小时,Li的质量就近似地等于 iiii ρ ξ η ζ ),,( Δs ,于是整条L的质量就近似地等于
文档格式:PDF 文档大小:302.45KB 文档页数:31
重积分的性质 性质 1(线性性)设 f 和 g 都在区域 Ω 上可积,α, β 为常数,则 α + βgf 在 Ω 上也可积,并且 ( )d α β f + g V ∫ Ω
文档格式:DOC 文档大小:60KB 文档页数:1
设P是数域,是一个文字,作多项式环P[],一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵.在这一章讨论矩阵的一些性质, 并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在矩阵中也包括以数为元素的 矩阵.为了与λ-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩阵.以
文档格式:DOC 文档大小:128.5KB 文档页数:4
这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在这个基础上,给 出用初等变换求逆矩阵的方法
首页上页612613614615616617618619下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8512 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有