点击切换搜索课件文库搜索结果(32)
文档格式:DOC 文档大小:370.5KB 文档页数:25
谱论是泛函分析的重要分支之一.从《线性代数》课程中可 知:有限维空间上的线性算子由它的特征值和最小多项式完全确 定,将这一结论推广到有界线性算子的情况,研究它的结构,就是 算子的谱理论.特征值的概念将相应地扩展为“谱”.由于特征值 和逆算子有密切关系
文档格式:PDF 文档大小:283.63KB 文档页数:9
本章首先讨论线性算子的有界性和有界线性算子的空间,然后叙述关于线性算子和线性 泛函的若干基本定理,它们是共鸣定理、开映射定理、闭图像定理以及 Hahn--Banach 延拓 定理(包括分析形式和几何形式). 这些定理在整个泛函分析理论中有着基本的重要作用. 本章还将介绍这些定理在 Fourie 分析、积分方程、微分方程适定问题以及逼近论和近似计 算等方面的应用
文档格式:PDF 文档大小:215.11KB 文档页数:19
本章将介绍一些必要的准备知识。第一节为 Hilbert空间中基的概念,第二节为线性算子的定义,第三节为有关积分的性质,第四节将介绍框架与 Riesz基。 1. BanachHibert空间与空间设X为数域K上的线性空间,若函数:X→R+满足如下三个条件: 1.三角不等式:w(x+y)≤w(x)+w(y),x,y∈, 2.齐次性:w(ax)=lalw(x),a∈k,x∈X, 3.正定性:w(x)=0分x=0
文档格式:DOC 文档大小:224.5KB 文档页数:4
一、有约束滤波 令Q为f的线性算子 最小二乘复原问题-H=函数服从约束条件的最小化问题
文档格式:PPT 文档大小:3.7MB 文档页数:111
矩量法(简称MoM),就其数值分析而言就是广义Galerkin(伽略金)法。矩量法包括两个过程,离散化过程和选配过程,从而把线性算子方程转化为矩阵方程。 &4.1 矩量法概述 &4.2 基函数与权函数选择 &4.3 MOM法应用举例
文档格式:DOC 文档大小:2.94MB 文档页数:85
Korovkin定理 如所知,逼近的目的,是用简单的函数来逼近复杂的函数本章讲述用多项 式序列逼近有界闭区间上连续函数的可行性 §1. Weierstrass第一定理 在实变函数的数学分析中,最重要的函数类实连续函数类Cab与连续的 周期函数类C2n Ca,b]是定义在某一闭区间[a,b]上的一切连续函数所成的集合;
文档格式:DOC 文档大小:306.5KB 文档页数:20
在这一章中,我们将研究从线性赋范空间X到另一个线性赋 范空间F中的映照,亦称算子.如果Y是数域,则称这种算子为泛 函.算子和泛函我们并不陌生.例如微分算子D=云就是从连续 可微函数空间C[an6]到Ca,b]E的算子,而黎曼积分(t)dt 就是连续函数空间Ca,b]上的泛函.如果说函数是数和数之间 的对应,那末算子可说是函数和函数之间的对应,不过这是更高 级的对应而巳
文档格式:PDF 文档大小:233.39KB 文档页数:15
1 Hilbert空间上线性泛函与线性算子的表现定理, 2自伴算子的基本性质。 3酉算子与正常算子的概念与属性
文档格式:PDF 文档大小:252.96KB 文档页数:16
线性算子的谱理论是与解算子方程紧密联系的,它起源于代数方 程、线性方程组、积分方程和微分方程的特征值问题. 实际上在泛函 分析产生的早期, Volterra、Fredholm、Hilbert 等人就曾研究过这 样的问题, 同时它也是泛函分析中经久不衰的研究课题. 本章首先讨 论算子的正则性和谱的概念及其基本性质,然后着重叙述 Riesz-Schauder 关于紧算子的谱论和 Hilbert 空间上自伴算子的谱 论,最后介绍谱系和谱分解问题
文档格式:PDF 文档大小:233.39KB 文档页数:15
1 Hilbert 空间上线性泛函与线性算子的表现定理。 2 自伴算子的基本性质。 3 酉算子与正常算子的概念与属性
1234下页
热门关键字
搜索一下,找到相关课件或文库资源 32 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有