GPS原理及其用 第四章距离测量与GPS定位 §4.4周跳的探测与修复 §4.5整周模糊度的确定
GPS原理及其应用 第四章 距离测量与GPS定位 §4.4 周跳的探测与修复 §4.5 整周模糊度的确定
GPS原理及其用 §4.4周跳的探测与修复 1.屏幕扫描法 2.高次差法 3.多项式拟合法 4.Mw观测值法 5.三差法
GPS原理及其应用 §4.4 周跳的探测与修复 1.屏幕扫描法 2.高次差法 3. 多项式拟合法 4. MW观测值法 5. 三差法
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>整周跳变(周跳- Cycle Slips) 44整周跳变(周跳- Cycle slips) 在某一特定时刻的载波相位观测值为 周跳 P(t)=No+Int((t))+ Fr(o(t)) 其中 qp(1)=Φ(zb)-Φ(ra t=T+v t=T+y 如果在观测过程接收机保持对卫星信号的连续跟 踪,则整周模糊度将保持不变,整周计数t(∞) 也将保持连续,但当由于某种原因使接收机无法 保持对卫星信号的连续跟踪时,在卫星信号重新 被锁定偏,将发生变化川)也不会与前面 的值保持连续,这一现象称为整周跳变
GPS原理及其应用 4.4整周跳变(周跳 – Cycle Slips) • 在某一特定时刻的载波相位观测值为 • 如果在观测过程接收机保持对卫星信号的连续跟 踪,则整周模糊度 将保持不变,整周计数 也将保持连续,但当由于某种原因使接收机无法 保持对卫星信号的连续跟踪时,在卫星信号重新 被锁定后, 将发生变化,而 也不会与前面 的值保持连续,这一现象称为整周跳变。 b a t v t v t t N t t b a b a = + = + = − = + + ( ) ( ) ( ) 其中: ( ) Int( ( )) Fr( ( )) ~ 0 周跳 T Int ( ) ( t ) N0 N0 Int ( ) ( t ) 距离测量与GPS定位 > 周跳的探测与修复 > 整周跳变(周跳– Cycle Slips)
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>产生周跳的原因 产生周跳的原因 信号被遮挡,导致卫星信号无法被跟踪 仪器故障,导致差频信号无法产生 卫星信号信噪比过低,导致整周计数错误 接收机在高速动态的环境下进行观测,导致 接收机无法正确跟踪卫星信号 卫星瞬时故障,无法产生信号
GPS原理及其应用 产生周跳的原因 • 信号被遮挡,导致卫星信号无法被跟踪 • 仪器故障,导致差频信号无法产生 • 卫星信号信噪比过低,导致整周计数错误 • 接收机在高速动态的环境下进行观测,导致 接收机无法正确跟踪卫星信号 • 卫星瞬时故障,无法产生信号 距离测量与GPS定位 > 周跳的探测与修复 > 产生周跳的原因
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>周跳的特点 周跳的特点 只影响整周计数一周跳为波长的整数倍 将影响从周跳发生时刻(历元)之后的所有 观测值 周跳 周跳将使周跳发生后的 所有观测值包含相同的 整周计数错误
GPS原理及其应用 周跳的特点 • 只影响整周计数- 周跳为波长的整数倍 • 将影响从周跳发生时刻(历元)之后的所有 观测值 周跳 T 周跳将使周跳发生后的 所有观测值包含相同的 整周计数错误 距离测量与GPS定位 > 周跳的探测与修复 > 周跳的特点
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>解决周跳问题的方法 解决周跳问题的方法 探测与修复 设法找出周跳发生的时间和大小 参数法 将周跳标记出来,引入周跳参数,进行解算
GPS原理及其应用 解决周跳问题的方法 • 探测与修复 – 设法找出周跳发生的时间和大小 • 参数法 – 将周跳标记出来,引入周跳参数,进行解算 距离测量与GPS定位 > 周跳的探测与修复 > 解决周跳问题的方法
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>屏幕扫描法 周跳的探测、修复方法① °屏幕扫描法 L1 Phase -L2 Phase adjusted 2 方法:人工在屏幕上 观察观测值曲线的变 化是否连续。 飞A凡、人 特点 费时、只能发现大周跳。 由于原始的载波观测值 72000 76000 8000 变化很快,通常观察的 是某种观测值的组合, 如 LI yLI 2
GPS原理及其应用 周跳的探测、修复方法① • 屏幕扫描法 – 方法:人工在屏幕上 观察观测值曲线的变 化是否连续。 – 特点 • 费时、只能发现大周跳。 • 由于原始的载波观测值 变化很快,通常观察的 是某种观测值的组合, 如 L1 L1 −L2 L2 。 距离测量与GPS定位 > 周跳的探测与修复 > 屏幕扫描法
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>高次差法 周跳的探测、修复方法② 高次差法 序号 一次差 二次差 次差 四次差 土次差 464623.1581 11210.0672 475833.2251 398.6859 32487441.9784 399.8140 91 12008.5671 2.5072 101.9586* 499450.5455 402.3212 100.5795* 2410.8883 401.5435 511861.4338 304.2489* 12715·1372 202.8916 601.236 1322.27 97.3805* 399.850z 537798.8487* 409.7600 99.578 1363.0377 -100) 551430.8864 411.9576 14043.995 565474.817
GPS原理及其应用 周跳的探测、修复方法② • 高次差法 距离测量与GPS定位 > 周跳的探测与修复 > 高次差法
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>高次差法 周跳的探测、修复方法②(续) 高次差法的原理 由于卫星和接收机间的距离在不断变化,因而 载波相位测量的观测值N0+In(中)+Fr)也随时 间在不断变化。 但这种变化应是有规律的,平滑的。周跳将破 坏这种规律性。 对于GPS卫星而言,当求至四次差时,其值已 趋向于零。残留的四次差主要是由接收机的钟 误差等因素引起的
GPS原理及其应用 周跳的探测、修复方法② (续) • 高次差法的原理 – 由于卫星和接收机间的距离在不断变化,因而 载波相位测量的观测值N0+Int(ф) +Fr(ф)也随时 间在不断变化。 – 但这种变化应是有规律的,平滑的。周跳将破 坏这种规律性。 – 对于GPS卫星而言,当求至四次差时,其值已 趋向于零。残留的四次差主要是由接收机的钟 误差等因素引起的。 距离测量与GPS定位 > 周跳的探测与修复 > 高次差法
GPS原理及其用 距离测量与GPS定位>周跳的探测与修复>高次差法 周跳的探测、修复方法②(续) ·高次差法的问题 接收机钟差对此方法有效性的影响 设接收机钟的稳定度为10-1°,接收机采样间隔为5秒, 对于L1(f1=1.57542×10°H,则接收机钟对相邻历元 载波相位观测值的影响为0-0×15×1.57542×10=236(周)。 克服接收机钟差影响的方法一卫星间求差
GPS原理及其应用 周跳的探测、修复方法② (续) • 高次差法的问题 – 接收机钟差对此方法有效性的影响 – 克服接收机钟差影响的方法 - 卫星间求差 载波相位观测值的影响为 周。 对于 ( )则接收机钟对相邻历元 设接收机钟的稳定度为 ,接收机采样间隔为 秒, 10 15 1.57542 10 2.36( ) 1 1.57542 10 , 10 15 1 0 9 9 1 1 0 = = − − L f Hz L 距离测量与GPS定位 > 周跳的探测与修复 > 高次差法