第四节呼吸运动的调节 呼吸运动是一种节律性的活动,其深度和频率随体内、外环境条件的改变而改变例如劳动或运动时,代 谢增强,呼吸加深加快,肺通气量增大,摄取更多的O,排出更多的CO,以与代谢水平相适应。呼吸 为什么能有节律地进行?呼吸的浓度和频率又如何能随内、外环境条件而改变?这些总是是本节的中 呼吸中枢与呼吸节律的形成 呼吸中枢是指中枢神经系统内产生和调节呼吸运动的神经细胞群。多年来,对于这些细胞群在中枢神经 系统内的分布和呼吸节律产生和调节中的作用,曾用多种技术方法进行研究。如早期的较为粗糙的切除 横断、破坏、电刺激等方法,和后来发展起来的较为精细的微小电毁损、微小电刺激、可逆性冷冻或化 学阻滞、选择性化学刺激或毁损、细胞外和细胞内微电极记录、逆行刺激(电刺激轴突,激起冲动逆行 传导至胞体,在胞体记录)、神经元间电活动的相关分析以及组织化学等方法。有管些方法对动物呼吸 中枢做了大量的实验性研究,获得了许多宝贵的资料,形成了一些假说或看法。 (一)呼吸中枢 吸中枢分布在大脑皮层、间脑、脑桥、延髓和脊髓等部位。脑的各级部位在呼吸节律产生和调节中所 起作用不同。正常呼吸运动是在各级呼吸中枢的相互配合下进行的 1.脊髓脊髓中支配呼吸肌的运动神经元位于第3-5颈段(支配膈肌)和胸段(支配肌间肌和腹肌等) 前角。很早就知道在延髓和脊髓间横断脊髓,呼吸就停止。所以,可以认为节律性呼吸运动不是在脊髓 产生的。脊髓只是联系上(高)位脑和呼吸肌的中继站和整合某些呼吸反射的初级中枢 2.下(低)位脑干下(低)位脑干指脑桥和延髓。横切脑干的实验表明,呼吸节律产生于下位脑干, 呼吸运动的变化因脑干横断的平面高低而异(图5-17)
第四节 呼吸运动的调节 呼吸运动是一种节律性的活动,其深度和频率随体内、外环境条件的改变而改变例如劳动或运动时,代 谢增强,呼吸加深加快,肺通气量增大,摄取更多的 O2,排出更多的 CO2,以与代谢水平相适应。呼吸 为什么能有节律地进行?呼吸的浓度和频率又如何能随内、外环境条件而改变?这些总是是本节的中 心。 一、呼吸中枢与呼吸节律的形成 呼吸中枢是指中枢神经系统内产生和调节呼吸运动的神经细胞群。多年来,对于这些细胞群在中枢神经 系统内的分布和呼吸节律产生和调节中的作用,曾用多种技术方法进行研究。如早期的较为粗糙的切除、 横断、破坏、电刺激等方法,和后来发展起来的较为精细的微小电毁损、微小电刺激、可逆性冷冻或化 学阻滞、选择性化学刺激或毁损、细胞外和细胞内微电极记录、逆行刺激(电刺激轴突,激起冲动逆行 传导至胞体,在胞体记录)、神经元间电活动的相关分析以及组织化学等方法。有管些方法对动物呼吸 中枢做了大量的实验性研究,获得了许多宝贵的资料,形成了一些假说或看法。 (一)呼吸中枢 呼吸中枢分布在大脑皮层、间脑、脑桥、延髓和脊髓等部位。脑的各级部位在呼吸节律产生和调节中所 起作用不同。正常呼吸运动是在各级呼吸中枢的相互配合下进行的。 1.脊髓 脊髓中支配呼吸肌的运动神经元位于第 3-5 颈段(支配膈肌)和胸段(支配肌间肌和腹肌等) 前角。很早就知道在延髓和脊髓间横断脊髓,呼吸就停止。所以,可以认为节律性呼吸运动不是在脊髓 产生的。脊髓只是联系上(高)位脑和呼吸肌的中继站和整合某些呼吸反射的初级中枢。 2.下(低)位脑干 下(低)位脑干指脑桥和延髓。横切脑干的实验表明,呼吸节律产生于下位脑干, 呼吸运动的变化因脑干横断的平面高低而异(图 5-17)
下叠体 NPRM 器 4小 脑脚 VRGex -XII Aw //va DRG D 迷龙怒完整切断迷走神 图5-17脑干呼吸有关核团(左)和在不同平面横切脑干后呼吸的变化(右)示意图 DRG:背侧呼吸组VRH:腹侧呼吸组NPBM:臂旁内侧核 A、B、C、D为不同平面横切 在动物中脑和脑桥之间进行横切(图5-17,A平面),呼吸无明显变化。在延髓和脊髓之间横切(D平 面),呼吸停止。上述结果表明呼吸节律产生于下位禽干,上位脑对节律性呼吸不是必需的。如果在 脑桥上、中部之间横切(B平面),呼吸将变慢变深,如再切断双侧迷走神经,吸气便大大延长,仅偶 尔为短暂的呼气所中断,这种形式的呼吸称为长吸呼吸。这一结果是提示脑桥上部有抑制吸气的中枢结 构,称为呼吸整中枢;来自肺部的迷走传入冲动也有抑制吸气的作用,当延髓失去来自这两方面对吸气 活动的抑制作用后,吸气活动不能及时中断,便出现长吸呼吸。再在脑桥和延髓之间横切(C平面), 不论迷走神经是否完整,长吸式呼吸都消失,而呈喘息样呼吸,呼吸不规则,或平静呼吸,或两者交替 出现。因而认为脑桥中下中有活化吸气的长吸中枢:单独的延髓即可产生节律呼吸。孤立延髓的实验进 步证明延髓可独立地产生节律呼吸。于是在20-50年代期间形成了三级呼吸中枢理论:;脑桥上部有呼 吸调整中枢,中下部有长吸中枢,延髓有呼吸节律基本中枢。后来的研究肯定了早期关于延髓有呼吸节 律基本中枢和脑桥上部有呼吸调整中枢的结论,但未能证实脑桥中下部存在着结构上特定的长吸中枢。 近年来,用微电极等新技术研究发现,在中枢神经系统内有的神经元呈节律性放电,并和呼吸周期相关 这些神经元被称为呼吸相关神经元或呼吸神经元。这些呼吸神经元有不同类型。就其自发放电的时间 而言,在吸气相放电的为吸气神经元,在呼气相放电的为呼气神经元,在吸气相放电并延续至呼气相的
图 5-17 脑干呼吸有关核团(左)和在不同平面横切脑干后呼吸的变化(右)示意图 DRG:背侧呼吸组 VRH:腹侧呼吸组 NPBM:臂旁内侧核 A、B、C、D 为不同平面横切 在动物中脑和脑桥之间进行横切(图 5-17,A 平面),呼吸无明显变化。在延髓和脊髓之间横切(D 平 面),呼吸停止。上述结果表明呼吸节律产生于下 位禽干,上位脑对节律性呼吸不是必需的。如果在 脑桥上、中部之间横切(B 平面),呼吸将变慢变深,如再切断双侧迷走神经,吸气便大大延长,仅偶 尔为短暂的呼气所中断,这种形式的呼吸称为长吸呼吸。这一结果是提示脑桥上部有抑制吸气的中枢结 构,称为呼吸整中枢;来自肺部的迷走传入冲动也有抑制吸气的作用,当延髓失去来自这两方面对吸气 活动的抑制作用后,吸气活动不能及时中断,便出现长吸呼吸。再在脑桥和延髓之间横切(C 平面), 不论迷走神经是否完整,长吸式呼吸都消失,而呈喘息样呼吸,呼吸不规则,或平静呼吸,或两者交替 出现。因而认为脑桥中下中有活化吸气的长吸中枢;单独的延髓即可产生节律呼吸。孤立延髓的实验进 一步证明延髓可独立地产生节律呼吸。于是在 20-50 年代期间形成了三级呼吸中枢理论;脑桥上部有呼 吸调整中枢,中下部有长吸中枢,延髓有呼吸节律基本中枢。后来的研究肯定了早期关于延髓有呼吸节 律基本中枢和脑桥上部有呼吸调整中枢的结论,但未能证实脑桥中下部存在着结构上特定的长吸中枢。 近年来,用微电极等新技术研究发现,在中枢神经系统内有的神经元呈节律性放电,并和呼吸周期相关, 这些神经元被 称为呼吸相关神经元或呼吸神经元。这些呼吸神经元有不同类型。就其自发放电的时间 而言,在吸气相放电的为吸气神经元,在呼气相放电的为呼气神经元,在吸气相放电并延续至呼气相的
为吸气-呼气神经元,在呼气相放电并延续到吸气相者,为呼气-吸气神经元,后两类神经元均系跨时相 神经元 在延髓,呼吸神经元内主要集中在背侧(孤東核的腹外侧部)和腹侧(疑核、后疑核和面神经后核附近 的包氏复合体)两组神经核团内,分别称为背侧呼吸组( dorsal respiratory group,DRG)和腹侧呼吸 组( ventral respiratory group,VRG)(图5-17)。背侧呼吸组的神经元轴突主要交叉到对侧,下 行至脊髓颈段,支配膈运动神经元。疑核呼吸神经元的轴突由同侧舌咽神经和迷走神经传出,支配咽喉 部呼吸辅助肌。后疑核的呼吸神经元绝大部分交叉到对侧下行,支配脊髓肌间内、外肌和腹肌的运动神 经元,商品化纤维也发出侧支支配膈肌的运动神经元。包氏复合体主要含呼气神经元,它们的轴突主要 与背侧呼吸组的吸气神经元形成抑制性联系,此外也有轴突支配脊髓的膈运动神经元 由于延髓呼吸神经元主要集中在背侧呼吸组和腹侧呼吸组,所以曾推测背侧呼吸组和腹侧呼吸组是产生 基本呼吸节律的部位。可是,后来的某些实验结果不支持这一看法。有人用化学的或电解的毁损这些区 域后,呼吸节律没有明显变化,这些结果提示背侧呼吸组和腹侧呼吸组可能不是呼吸节律唯一发源地 呼吸节律可能源于多个部位,产生呼吸节律的神经结构相当广泛,所以不容易因局灶损害而丧失呼吸 节律 在脑桥上部,呼吸神经元相对集中于臂旁内侧核和相邻的 Kolliker-Fuse(KF)核,合称PBKF核群。 PBKF和延髓的呼吸神经核团之间有双向联系,形成调控呼吸的神经元回路。在麻醉猫,切断双侧迷走 神经,损毁PBKF可出现长吸,提示早先研究即已发现的呼吸调整中枢乃位于脑桥的BPKF,其作用为限 制吸气,促使吸气向呼气转换。 3.上位脑呼吸还受脑桥以上部位的影响,如大脑皮层、边缘系统、下丘脑等 大脑皮层可以随意控制呼吸,发动说、唱等动作,在一定限度内可以随意屏气或加强加快呼吸。大脑皮 层对呼吸的调节系统是随意呼吸调节系统,下位脑干的呼吸调节系统是自主节律呼吸调节系统。这两个 系统的下行通路是分开的。临床上有时可以观察到自主呼吸和随意呼吸分离的现象。例如在脊髓前外侧 索下行的处主呼吸通路受损后,自主节律呼吸甚至停止,但病人仍可进行随意呼吸。患者靠随意呼吸或 人工呼吸来维持肺通气,如未进行人工呼吸,一旦病人入睡,可能发生呼吸停止 二)呼吸节律形成的假说
为吸气-呼气神经元,在呼气相放电并延续到吸气相者,为呼气-吸气神经元,后两类神经元均系跨时相 神经元。 在延髓,呼吸神经元内主要集中在背侧(孤束核的腹外侧部)和腹侧(疑核、后疑核和面神经后核附近 的包氏复合体)两组神经核团内,分别称为背侧呼吸组(dorsal respiratory group,DRG)和腹侧呼吸 组(ventral respiratory group,VRG)(图 5-17)。背侧呼吸组的神经元轴突主要交叉到 对侧,下 行至脊髓颈段,支配膈运动神经元。疑核呼吸神经元的轴突由同侧舌咽神经和迷走神经传出,支配咽喉 部呼吸辅助肌。后疑核的呼吸神经元绝大部分交叉到对侧下行,支配脊髓肌间内、外肌和腹肌的运动神 经元,商品化纤维也发出侧支支配膈肌的运动神经元。包氏复合体主要含呼气神经元,它们的轴突主要 与背侧呼吸组的吸气神经元形成抑制性联系,此外也有轴突支配脊髓的膈运动神经元。 由于延髓呼吸神经元主要集中在背侧呼吸组和腹侧呼吸组,所以曾推测背侧呼吸组和腹侧呼吸组是产生 基本呼吸节律的部位。可是,后来的某些实验结果不支持这一看法。有人用化学的或电解的毁损这些区 域后,呼吸节律没有明显变化,这些结果提示背侧呼吸组和腹侧呼吸组可能不是呼吸节律唯一发源地, 呼吸节律可能源于 多个部位,产生呼吸节律的神经结构相当广泛,所以不容易因局灶损害而丧失呼吸 节律。 在脑桥上 部,呼吸神经元相对集中于臂旁内侧核和相邻的 Kolliker-Fuse(KF)核,合称 PBKF 核群。 PBKF 和延髓的呼吸神经核团之间有双向联系,形成调控呼吸的神经元回路。在麻醉猫,切断双侧迷走 神经,损毁 PBKF 可出现长吸,提示早先研究即已发现的呼吸调整中枢乃位于脑桥的 BPKF,其作用为限 制吸气,促使吸气向呼气转换。 3.上位脑 呼吸还受脑桥以上部位的影响,如大脑皮层、边缘系统、下丘脑等。 大脑皮层可以随意控制呼吸,发动说、唱等动作,在一定限度内可以随意屏气或加强加快呼吸。大脑皮 层对呼吸的调节系统是随意呼吸调节系统,下位脑干的呼吸调节系统是自主节律呼吸调节系统。这两个 系统的下行通路是分开的。临床上有时可以观察到自主呼吸和随意呼吸分离的现象。例如在脊髓前外侧 索下行的处主呼吸通路受损后,自主节律呼吸甚至停止,但病人仍可进行随意呼吸。患者靠随意呼吸或 人工呼吸来维持肺通气,如未进行人工呼吸,一旦病人入睡,可能发生呼吸停止。 (二)呼吸节律形成的假说
呼吸节律是怎样产生的,尚未完全阐明,已提出多种假说,当前最为流行的是局部神经元回路反馈控制 假说 中枢神经系统里有许多神经元没有长突起向远处投射,只有短突起在某一部位内形成局部神经元回路联 系。回路内可经正反馈联系募集更多神经元兴奋,以延长兴奋时间或加强兴奋活动:也可以负反馈联 系,以限制其活动时间或终止其活动。平静呼吸时,由于吸气是主动的,所以许多学者更多地是去研究 吸气中如何发生的,又如何转变为呼气的。有人提出中枢吸气活动发生器和吸气切断机制( Inspiratory off- switch mechanism)的看法,认为在延髓有一个中枢吸气活动发生器,引发吸气神经元呈斜坡样渐 增性放电,产生吸气:还有一个吸气切断机制,使吸气切断而发生呼气。在中枢吸气活动发生器作用下, 吸气神经元兴奋,其兴奋传至①脊髓吸气肌运动神经元,引起吸气,肺扩张:②脑桥臂旁内侧核,加强 其活动;③吸气切断机制,使之兴奋。吸气切断机制接受来自吸气神经元,脑桥背旁内侧核,和肺牵张 感觉器的冲动。随着吸气相的进行,来自这三方面的冲动均逐渐增强,在吸气切断机制总合达到阈值时, 吸气切断机制兴奋,发出冲动到中枢吸气活动发生器或吸气神经元,以负反馈形式终止其活动,吸气停 止,转为呼气(图5-18)。切断迷走神经或毁损脑桥臂旁内侧核或两者,吸气切断机制达到阈值所需 时间延长,吸气因面延长,呼吸变慢。因此,凡可影响中枢吸气活动发生器、吸气切断机制阈值或达 到阈值所需时间的因素,都可影响呼吸过程和节律 关于呼气如何转入吸气,呼吸加强时呼气又如何成为主动的,目前了解料少 臂旁内筑核 KE 核 中枢吸气活动发 生器要气神经元 吸气切断机慚 改气运 动神经元 吸气动 要气→扩肺→刺激肺张感亞郦
呼吸节律是怎样产生的,尚未完全阐明,已提出多种假说,当前最为流行的是局部神经元回路反馈控制 假说。 中枢神经系统里有许多神经元没有长突起向远处投射,只有短突起在某一部位内形成局部神经元回路联 系。回路内可经正反馈联系募集 更多神经元兴奋,以延长兴奋时间或加强兴奋活动;也可以负反馈联 系,以限制其活动时间或终止其活动。平静呼吸时,由于吸气是主动的,所以许多学者更多地是去研究 吸气中如何发生的,又如何转变为呼气的。有人提出中枢吸气活动发生器和吸气切断机制(inspiratory off-switch mechanism)的看法,认为在延髓有一个中枢吸气活动发生器,引发吸气神经元呈斜坡样渐 增性放电,产生吸气;还有一个吸气切断机制,使吸气切断而发生呼气。在中枢吸气活动发生器作用下, 吸气神经元兴奋,其兴奋传至①脊髓吸气肌运动神经元,引起吸气,肺扩张;②脑桥臂旁内侧核,加强 其活动;③吸气切断机制,使之兴奋。吸气切断机制接受来自吸气神经元,脑桥背旁内侧核,和肺牵张 感觉器的冲动。随着吸气相的进行,来自这三方面的冲动均逐渐增强,在吸气切断机制总合达到阈值时, 吸气切断机制兴奋,发出冲动到中枢吸气活动发生器或吸气神经元,以负反馈形式终止其活动,吸气停 止,转为呼气(图 5-18)。切断迷走神经或毁损脑桥臂旁内侧核或两者,吸气切断机制达到阈值所需 时间延长,吸气因面 延长,呼吸变慢。因此,凡可影响中枢吸气活动发生器、吸气切断机制阈值或达 到阈值所需时间的因素,都可影响呼吸过程和节律。 关于呼气如何转入吸气,呼吸加强时呼气又 如何成为主动的,目前了解料少
图5-18呼吸节律形成机制简化模式图 :表示兴奋-:表示抑制 、呼吸的反射性调节 呼吸节律虽然产生于脑,但其活动可受来自呼吸器官本身以及骨骼肌、其它器官系统感觉器‘传入冲动 的反射性调节,下述其中的一些重要反射 (一)肺牵张反射 1868年 Breuer和 Hering发现,在麻醉动物肺充气或肺扩张,则抑制吸气;肺放气或肺缩小,则引起 吸气。切断迷走神经,上述反应消失,所以是反射性反应。由肺扩张或肺缩小引起的吸气抑制或兴奋的 反射为黑一伯反射( Hering- Breuer reflex)或肺牵张反射。它有两种成分:肺扩张反射和肺缩小反射 1.肺扩张反射是肺充气或扩张时抑制吸气的反射。感觉器位于从气管到细支气管的平滑肌中,是牵张 感受器,阈值低,适应慢。当肺扩张牵拉呼吸道,使之也扩张时,感觉器兴奋,冲动经迷走神经走神经 粗纤维传入延髓。在延髓内通过一定的神经联系使吸气切断机制兴奋,切断吸气,转入呼气。这样便加 速了吸气和呼气的交替,使呼吸频率増加。所以切断迷走神经后,吸气延长、加深,呼吸变得深而慢。 有人比较了8种动物的肺扩张反射,发现有种属差异,兔的最强,人的最弱。在人体,当潮气量增加至 8oo灬nl以上时,才能引起肺扩张反射,可能是由于人体肺扩张反射的中枢阈值较高所致。所以,平静呼 吸时,肺扩张反射不参与人的呼吸调节。但在初生婴儿,存在这一反射,大约在出生4-5天后,反射就 显著减弱。病理情况下,肺顺应性降低,肺扩张时使气道扩张较大,刺激较强,可以引起该反射,使呼 吸变浅变快。 2.肺缩小反射是肺缩小时引起吸气的反射。感受器同样位于气道平滑肌内,但其性质尚不十分清楚。 肺缩小反向在较强的缩肺时才出现,它在平静呼吸调节中意义不大,但对阻止呼气过深和肺不张等可能 起一定作用。 (二)呼吸肌本体感受性反射 肌梭和腱器官是骨骼肌的本体感受器,它们所引起的反射为本体感受性反射。如肌梭受到牵张刺激时可 以反射性地引起受刺激肌梭所在肌的收缩,为牵张反射,属本体感受性反射(参见第十章第四节)。呼
图 5-18 呼吸节律形成机制简化模式图 +:表示兴奋 -:表示抑制 二、呼吸的反射性调节 呼吸节律虽然产生于脑,但其活动可受来自呼吸器官本身以及骨骼肌、其它器官系统感觉器‘传入冲动 的反射性调节,下述其中的一些重要反射 (一)肺牵张反射 1868 年 Breuer 和 Hering 发现,在麻醉动物肺充气或肺扩张,则抑制吸气;肺放气或肺缩小,则引起 吸气。切断迷走神经,上述反应消失,所以是反射性反应。由肺扩张或肺缩小引起的吸气抑制或兴奋的 反射为黑-伯反射(Hering-Breuer reflex)或肺牵张反射。它有两种成分:肺扩张反射和肺缩小反射。 1.肺扩张反射 是肺充气或扩张时抑制吸气的反射。感觉器位于从气管到细支气管的平滑肌中,是牵张 感受器,阈值低,适应慢。当肺扩张牵拉呼吸道,使之也扩张时,感觉器兴奋,冲动经迷走神经走神经 粗纤维传入延髓。在延髓内通过一定的神经联系使吸气切断机制兴奋,切断吸气,转入呼气。这样便加 速了吸气和呼气的交替,使呼吸频率增加。所以切断迷走神经后,吸气延长、加深,呼吸变得深而慢。 有人比较了 8 种动物的肺扩张反射,发现有种属差异,兔的最强,人的最弱。在人体,当潮气量增加至 800ml 以上时,才能引起肺扩张反射,可能是由于人体肺扩张反射的中枢阈值较高所致。所以,平静呼 吸时,肺扩张反射不参与人的呼吸调节。但在初生婴儿,存在这一反射,大约在出生 4-5 天后,反射就 显著减弱。病理情况下,肺顺应性降低,肺扩张时使气道扩张较大,刺激较强,可以引起该反射,使呼 吸变浅变快。 2.肺缩小反射 是肺缩小时引起吸气的反射。感受器同样位于气道平滑肌内,但其性质尚不十分清楚。 肺缩小反向在较强的缩肺时才出现,它在平静呼吸调节中意义不大,但对阻止呼气过深和肺不张等可能 起一定作用。 (二)呼吸肌本体感受性反射 肌梭和腱器官是骨骼肌的本体感受器,它们所引起的反射为本体感受性反射。如肌梭受到牵张刺激时可 以反射性地引起受刺激肌梭所在肌的收缩,为牵张反射,属本体感受性反射(参见第十章第四节)。呼
吸肌也有牵张反射的主要依据是:在麻醉猫,切断双侧迷走神经,颈7横断脊髓,牵拉膈肌,膈肌肌电 活动啬:切断动物的胸脊神经背根,呼吸运动减弱;人类为治病需要曾做类似手术,术后相应呼吸肌的 活动发生可恢复的或可部分恢复的减弱。说明呼吸肌本体感受性反射参与正常呼吸运动的调节,在呼吸 肌负荷改变时将发挥更大的作用。但是,这些依据不是无懈可击的。因为背根切断术不仅切断了本本感 受器的传入纤维,也切断了所有经背根传入的其它感受器的传入纤维。近来的研究表明来自呼吸肌其它 感受器的传入冲动也可反射性地影响呼吸。因此,对呼吸肌本体感受性反射应做更深更深入细致的研究, 如研究分别兴奋不同感受器或传入纤维时对呼吸的效应 (三)防御性呼吸反射 在整个呼吸道都存在着感受器,它们是分布在粘膜上皮的迷走传入神经末梢,受到机械或化学刺激时 引起防御性呼吸反射,以清除激惹物,避免其进入肺泡。 1.咳嗽反射是常见的重要防御反射。它的感受器位于喉、气管和支气管的粘膜。大支气管以上部位的 感受器对机械刺激敏感,二级支气管以下部位的对化学刺激敏感。传入冲动经迷走神经传入延髓,触发 一系列协调的反射反应,引起咳嗽反射。 咳嗽时,先是短促或深吸气,接着声门紧闭,呼气肌强烈收缩,肺内压和胸膜腔内压急速上升,然后声 门突然打开,由于气压差极大,气体更以极高的速度从肺内冲出,将呼吸道内异物或分泌物排出。剧烈 咳嗽时,因胸膜腔内压显著升高,可阻碍静脉因流,使静脉压和脑脊液压升高。 2.喷嚏反射是和咳嗽类似的反射,不同的是:刺激作用于鼻粘膜感受器,传入神经是三叉神经,反射 效应是腭垂下降,舌压向软腭,而不是声门关闭,呼出气主要从鼻腔喷出,以清除鼻腔中的剌激物 (四)肺毛细血管旁(J-)感受器引起的呼吸反射 J感受器位于肺泡毛细血管旁,在肺毛细血管充血、肺泡壁间质积液时受到刺激,冲动经迷走神经无髓 C纤维传入延髓,引起反射性呼吸暂停,继以浅快呼吸,血压降低,心率减慢。J-感受器在呼吸调节中 的作用尚不清楚,可能与运动时呼吸加快作肺充血、肺水肿时的急促呼吸有关 (五)某些穴位刺激的呼吸效应
吸肌也有牵张反射的主要依据是:在麻醉猫,切断双侧迷走神经,颈 7 横断脊髓,牵拉膈肌,膈肌肌电 活动啬;切断动物的胸脊神经背根,呼吸运动减弱;人类为治病需要曾做类似手术,术后相应呼吸肌的 活动发生可恢复的或可部分恢复的减弱。说明呼吸肌本体感受性反射参与正常呼吸运动的调节,在呼吸 肌负荷改变时将发挥更大的作用。但是,这些依据不是无懈可击的。因为背根切断术不仅切断了本本感 受器的传入纤维,也切断了所有经背根传入的其它感受器的传入纤维。近来的研究表明来自呼吸肌其它 感受器的传入冲动也可反射性地影响呼吸。因此,对呼吸肌本体感受性反射应做更深更深入细致的研究, 如研究分别兴奋不同感受器或传入纤维时对呼吸的效应。 (三)防御性呼吸反射 在整个呼吸道都存在着感受器,它们是分布在粘膜上皮的迷走传入神经末梢,受到机械或化学刺激时, 引起防御性呼吸反射,以清除激惹物,避免其进入肺泡。 1.咳嗽反射 是常见的重要防御反射。它的感受器位于喉、气管和支气管的粘膜。大支气管以上部位的 感受器对机械刺激敏感,二级支气管以下部位的对化学刺激敏感。传入冲动经迷走神经传入延髓,触发 一系列协调的反射反应,引起咳嗽反射。 咳嗽时,先是短促或深吸气,接着声门紧闭,呼气肌强烈收缩,肺内压和胸膜腔内压急速上升,然后声 门突然打开,由于气压差极大,气体更以极高的速度从肺内冲出,将呼吸道内异物或分泌物排出。剧烈 咳嗽时,因胸膜腔内压显著升高,可阻碍静脉因流,使静脉压和脑脊液压升高。 2.喷嚏反射 是和咳嗽类似的反射,不同的是:刺激作用于鼻粘膜感受器,传入神经是三叉神经,反射 效应是腭垂下降,舌压向软腭,而不是声门关闭,呼出气主要从鼻腔喷出,以清除鼻腔中的刺激物。 (四)肺毛细血管旁(J-)感受器引起的呼吸反射 J-感受器位于肺泡毛细血管旁,在肺毛细血管充血、肺泡壁间质积液时受到刺激,冲动经迷走神经无髓 C 纤维传入延髓,引起反射性呼吸暂停,继以浅快呼吸,血压降低,心率减慢。J-感受器在呼吸调节中 的作用尚不清楚,可能与运动时呼吸加快作肺充血、肺水肿时的急促呼吸有关。 (五)某些穴位刺激的呼吸效应
针刺人中窕可以急救全麻手术过程中出现的呼吸停止。针刺动物人中可以使膈肌呼吸运动增强,电刺激 家兔人中对膈神经和管髓呼吸神经元电活动有特异性影响。有人观察到在麻醉意外事件发生呼吸暂停 时,刺激素可以兴奋呼吸。穴位的呼吸效应及其机制值得探讨。 (六)血压对呼吸的影响 血压大幅度变化时可以反射性地影响呼吸,血压升高,呼吸减弱减慢:血压降低,呼吸加强加快。 、化学因素对呼吸的调节 化学因素对呼吸的调节也是一种呼吸的反射性调节,化学因素是指动脉血或脑脊液中的02、CO2和H。 机体通过呼吸调节血液中的O2、CO2和H的水平,动脉血中O2、CO2和H水平的变化又通过化学感受器调 节着呼吸,如此形成的控制环维持着内环境这些因素的相对稳定 (一)化学感受器 化学感觉器是拂晓春适宜刺激化学物质的感受器。参与呼吸调节的化学感受器因其所在部位的不同,分 为外周化学感受器和中枢化学感受器 1.外周化学感受器颈动脉体和主动脉体是调节呼吸和循环的重要外周化学感受器。在动脉血PO2降低、 PCO2或H浓度([H])升主时受到刺激,冲动经窦神经和迷走神经传入延髓,反射性地引起呼吸加深加 快和血液循环的变化。虽然颈、主动脉体两者都参与呼吸和循环的调节,但是颈动脉体主要调节呼吸 而主动脉体在循环调节方面较为重要。由于颈动脉体的有利的解剖位置,所以,对外周化学感受器的研 究主要集中在颈动脉体 颈动脉体含Ⅰ型细胞(球细胞)和Ⅱ型细胞(鞘细胞),它们周围包绕以毛细血管窦。血液供应十分丰 富。Ⅰ型细胞呈球形,有大量囊泡,内含递质,如乙酰胆碱、儿茶酚胺、某些神经活性肽等。Ⅱ型细胞 数量较少,没有囊泡。Ⅱ型细胞包绕着Ⅰ型细胞、神经纤维和神经末梢,功能上类似神经胶质细胞,与 颈动脉体其它成分之间没有特化的接触。窦神经的传入纤维末梢分支穿插于Ⅰ、Ⅱ型细胞之间,与Ⅰ型 细胞形成特化接触,包括单向突触、交互突触、缝隙边接等(图5-19),传入神经末梢可以是突触前 和(或)突触后成分。交互突触构成Ⅰ型细胞与传入神经之间的一种反馈环路,借释放递质调节化学感 受器的敏感性。此外,颈动脉体还有传出神经支配,借调节血流和化学感受器以改变化学感受器的活动
针刺人中窕可以急救全麻手术过程中出现的呼吸停止。针刺动物人中可以使膈肌呼吸运动增强,电刺激 家兔人中对膈神经和管髓呼吸神经元电活动有特异性影响。有人观察到在麻醉意外事件发生呼吸暂停 时,刺激素可以兴奋呼吸。穴位的呼吸效应及其机制值得探讨。 (六)血压对呼吸的影响 血压大幅度变化时可以反射性地影响呼吸,血压升高,呼吸减弱减慢;血压降低,呼吸加强加快。 三、化学因素对呼吸的调节 化学因素对呼吸的调节也是一种呼吸的反射性调节,化学因素是指动脉血或脑脊液中的 O2、CO2 和 H +。 机体通过呼吸调节血液中的 O2、CO2和 H +的水平,动脉血中 O2、CO2 和 H +水平的变化又通过化学感受器调 节着呼吸,如此形成的控制环维持着内环境这些因素的相对稳定。 (一)化学感受器 化学感觉器是拂晓春适宜刺激化学物质的感受器。参与呼吸调节的化学感受器因其所在部位的不同,分 为外周化学感受器和中枢化学感受器。 1.外周化学感受器 颈动脉体和主动脉体是调节呼吸和循环的重要外周化学感受器。在动脉血 PO2 降低、 PCO2 或 H +浓度([H+ ])升主时受到刺激,冲动经窦神经和迷走神经传入延髓,反射性地引起呼吸加深加 快和血液循环的变化。虽然颈、主动脉体两者都参与呼吸和循环的调节,但是颈动脉体主要调节呼吸, 而主动脉体在循环调节方面较为重要。由于颈动脉体的有利的解剖位置,所以,对外周化学感受器的研 究主要集中在颈 动脉体。 颈动脉体含Ⅰ型细胞(球细胞)和Ⅱ型细胞(鞘细胞),它们周围包绕以毛细血管窦。血液供应十分丰 富。Ⅰ型细胞呈球形,有大量囊泡,内含递质,如乙酰胆碱、儿茶酚胺、某些神经活性肽等。Ⅱ型细胞 数量较少,没有囊泡。Ⅱ型细胞包绕着Ⅰ型细胞、神经纤维和神经末梢,功能上类似神经胶质细胞,与 颈动脉体其它成分之间没有特化的接触。窦神经的传入纤维末梢分支穿插于Ⅰ、Ⅱ型细胞之间,与Ⅰ型 细胞形成特化接触,包括单向突触、交互突触、缝隙边接等(图 5-19),传入神经末梢可以是突触前 和(或)突触后成分。交互突触构成Ⅰ型细胞与传入神经之间的一种反馈环路,借释放递质调节化学感 受器的敏感性。此外,颈动脉体还有传出神经支配,借调节血流和化学感受器以改变化学感受器的活动
用游离的颈动脉体,记录其传入神经单纤维的动作,观察改变灌流液成分时动作频率的变化,可以了解 颈动脉体所感受的刺激的性质以及刺激与反应之间的关系。结果发现当灌流液PO2下降,PCO2或[]升 高时,传入冲动增加。如果保持灌流血液的PO2正常的13.3kPa(100mlHg),仅减少血流量,传入冲动也 增加。困为血流量下降时,颈动脉体从单位血液中摄取的02量相对增加,细胞外液PO2因供O2少于耗O2 而下降。但在贫血或CO中毒时,血O2含量虽然下降,但PO2正常,只需血流量充分,化学感受器传入 冲动并不增加,所以化学感受器所感受的刺激是PO,而不是动脉血O2含量,而且是感受器所处环境的 PO2。从实验中还可看出上述三种刺激对化学感受器有相互增强的作用。两种刺激同进作用时比单一刺 的效应强。这种协同作用有重要意义,因为机体发生循环或呼吸衰竭时,总是PCO2升高和PO降低同 进存在,它们的协同作用加强了对化学感受器的刺激,从而促进了代偿性呼吸增强的反应 I型顰愍 球肥) 舌咽神经怜入纤维 k细 球细 图5-19颈动脉体组织结构示意图图中未显示Ⅱ细胞 目前认为,I型细胞起着化学感受器的作用。当它们受到刺激时,细胞浆内[Ca2]升高。触发递质释放, 引起传入神经纤维兴奋。PO2降低与PCO2或[H]升高引起细胞内[Ca21升高机制不同。PO2降低可抑制细 胞K通道的开放,K外流减少,细胞膜去极化,从而促使电压依从性Ca2通道开放,Ca2进入细胞。而 PCO2或[H]升高时,进入细胞内的H增多,激活了细胞的Na-H交换机制,Na'进入细胞,使细胞内[Na]
用游离的颈动脉体,记录其传入神经单纤维的动作,观察改变灌流液成分时动作频率的变化,可以了解 颈动脉体所感受的刺激的性质以及刺激与反应之间的关系。结果发现当灌流液 PO2 下降,PCO2 或[H+ ]升 高时,传入冲动增加。如果保持灌流血液的 PO2 正常的 13.3kPa(100mlHg),仅减少血流量,传入冲动也 增加。困为血流量下降时,颈动脉体从单位血液中摄取的 O2 量相对增加,细胞外液 PO2 因供 O2 少于耗 O2 而下降。但在贫血或 CO 中毒时,血 O2 含量虽然下降,但 PO2 正常,只需血流量充分,化学感受器传入 冲动并不增加,所以化学感受器所感受的刺激是 PO2,而不是动脉血 O2 含量,而且是感受器所处环境的 PO2。从实验中还可看出上述三种刺激对化学感受器有相互增强的作用。两种刺激同进作用时比单一刺 激的效应强。这种协同作用有重要意义,因为机体发生循环或呼吸衰竭时,总是 PCO2 升高和 PO2 降低同 进存在,它们的协同作用加强了对化学感受器的刺激,从而促进了代偿性呼吸增强的反应。 图 5-19 颈 动脉体组织结构示意图 图中未显示Ⅱ细胞 目前认为,Ⅰ型细胞起着化学感受器的作用。当它们受到刺激时,细胞浆内[Ca2+]升高。触发递质释放, 引起传入神经纤维兴奋。PO2 降低与 PCO2 或[H+ ]升高引起细胞内[Ca2+]升高机制不同。PO2 降低可抑制细 胞 K +通道 的开放,K +外流减少,细胞膜去极化,从而促使电压依从性 Ca2+通道开放,Ca2+进入细胞。而 PCO2 或[H+ ]升高时,进入细胞内的 H +增多,激活了细胞的 Na+ -H +交换机制,Na+进入细胞,使细胞内[Na+ ]
长高,继而使细胞的Na-Ca2交换机制活动啬,Na'出细胞,Ca2进细胞内,引起细胞浆内[Ca2]升高。还 有资料表明,少部分胞浆内Ca2可能来自细胞内的Ca贮器。 2.中枢化学感受器摘除动物外周化学感受器或切断其传入神经后,吸入CO仍能加强通气。改变脑脊 液CO2和H浓度也能刺激呼吸。过去认为这是CO2直接刺激呼吸中枢所致年代以来,用改变脑表面灌流 液成分和pH、局部冷阻断、电凝固损伤、电刺激、记录神经元电活动、离体脑组织块的电生理硏究等 方法在多种动物做了大量实验,结果表明在延髓有一个不同于呼吸中枢,但可影响呼吸的化学感受器, 称为中枢化学感受器,以另于外周化学感受器。 中枢化学感受器位于延髓腹外侧浅表部位,左右对称,可以分为头、中、尾三个区(图5-20A)。头 端和尾端区都有化学感受性,中间区不具有化学感受性,不过,局部阻滞或损伤中间区后,可以使动物 通气量降低,并使头端、尾端区受刺激时的通气反应消失,提示中间区可能是端区和尾端区传入冲 动向脑干呼吸中枢投射的中继站。应用胆碱能激动剂和拮抗剂的研究结果表明,在中枢化学感受器传递 环节中可能有胆碱能机制参与 化学敏惑区 影响呼吸然 化学敏感区 呼吸有关 LH++HCOa H:CO 图5-20中枢化学感受器 A示延髓腹外侧的三个化学敏感区B示血液或 脑脊液PCO2升高时,刺激呼吸的中枢机制
长高,继而使细胞的 Na+ -Ca2+交换机制活动啬,Na+出细胞,Ca2+进细胞内,引起细胞浆内[Ca2+]升高。还 有资料表明,少部分胞浆内 Ca2+可能来自细胞内的 Ca2+贮器。 2.中枢化学感受器 摘除动物外周化学感受器或切断其传入神经后,吸入 CO2 仍能加强通气。改变脑脊 液 CO2 和 H +浓度也能刺激呼吸。过去认为这是 CO2 直接刺激呼吸中枢所致年代以来,用改变脑表面灌流 液成分和 pH、局部冷阻断、电凝固损伤、电刺激、记录神经元电活动、离体脑组织块的电生理研究等 方法在多种动物做了大量实验,结果表明在延髓有一个不同于呼吸中枢,但可影响呼吸的化学感受器, 称为中枢化学感受器,以另于外周化学感受器。 中枢化学感受器 位于延髓腹外侧浅表部位,左右对称,可以分为头、中、尾三个区(图 5-20A)。头 端和尾端区都有化学感受性,中间区不具有化学感受性,不过,局部阻滞或损伤中间区后,可以使动物 通气量降低,并使头端、尾 端区 受刺激时的通气反应消失,提示中间区可能是端区和尾 端区传入冲 动向脑干呼吸中枢投射的中继站。应用胆碱能激动剂和拮抗剂的研究结果表明,在中枢化学感受器传递 环节中可能有胆碱能机制参与。 图 5-20 中枢化学感受器 A 示延髓腹外侧的三个化学敏感区 B 示血液或 脑脊液 PCO2 升高时,刺激呼吸的中枢机制
中枢化学感受器的生理刺激是脑脊液和局部细胞外液的H。因为如果保持人工脑脊液的pH不变,用含 高浓度CO2的人工脑脊液灌流脑室时所引起的通气增强反应消失,可见有效刺激不是CO2本身,而是CO2 所引起的[]的增加。在体内,血液中的C02能迅速通过血脑屏障,使化学感受器周围液体中的[H]升 高,从而刺激中枢化学感受器,再引起呼吸中枢的兴奋(图5-20B)。可是,脑脊液中碳酸酶含量很少 CO2与水的水合反应很慢,所以对CO的反应有一定的时间延迟。血液中的H不易以通过血液屏障,故血 液pH的变化对中枢化学感受器的直接作用不大,也较缓慢 中枢化学感受器与外周化学感受器不同,它不感受缺O2的刺激,但对CO的敏感性比外周的主,反应潜 伏期较长。中枢化学感受器的作用可能是调节脑脊液的[H],使中枢神经系统有一稳定的pH环境,而 外周化学感受器的作用主要是在机体低O2时,维持对呼吸的驱动。 (二)CO2、H和O2对呼吸的影响 1.CO2的影响很早已经知道,在麻醉动物或人,动脉血液PCO2降得很低时可发生呼吸暂停。因此, 定水平的PCO2对维持呼吸和呼吸中枢的兴奋性是必要的,CO2是调节呼吸的最重要的生理性体液因子 吸入含O2的混合气,将使肺泡气PC2长高,动脉血PCO2也随之升高,呼吸加深加快,肺通气量增加(图 5-21)。通过肺通气量的增大可能增加CO2的清除,肺泡气和动脉血PCO2还可维持于接近正常水平。但 是,当吸入气CO陡升,CO堆积,压抑中枢神经系统的活动,包括呼吸中枢,发生呼吸困难、头痛、头 昏,甚至昏迷,出现CO2麻醉。对CO2的反应,有个体差异,还受许多因素影响,如疾病或药物。总之 CO2在呼吸调节中是经常起作用的最重要的化学刺激,在一定范围内动脉血PCO2的升高,可以加强对呼 吸的刺激作用,但超过一定限度则有压抑和麻醉效应 CO刺激呼吸是通过两条途径实现的,一是通过刺激中枢化学感受器再兴奋呼吸中枢:二是刺激外周化 学感受器,冲动窦神经和迷走神经传入延髓呼吸有关疑团,反射性地使呼吸加深、加快,增加肺通气 但两条途径中前者是主要的。因为去掉外周化学感受器的作用之后,CO2的通气反应仅下降约20%,可 见中枢化学感受器在CO2通气反应中起主要作用;动脉血PC2只需升高0.266kPa(2mmHg)就可刺激中枢 化学感受器,出现通气加强反应,如刺激外周化学感受器,则需升高1.33kPa(10mmHg)。不过,在下述 情况下,外周化学感受器的作用可能是重要的:因为中枢化学感受器的反应慢,所以当动脉血PCO2突 然大增时,外周化学感受器在引起快速呼吸反应中可起重要作用;当中枢化学感受器到抑制,对CO2的 反应降低时,外周化学感受器就起重要作用
中枢化学感受器的生理刺激是脑脊液和局部细胞外液的 H +。因为如果保持人工脑脊液的 pH 不变,用含 高浓度 CO2 的人工脑脊液灌流脑室时所引起的通气增强反应消失,可见有效刺激不是 CO2 本身,而是 CO2 所引起的[H+ ]的增加。在体内,血液中的 CO2 能迅速通过血脑屏障,使化学感受器周围液体中的[H+ ]升 高,从而刺激中枢化学感受器,再引起呼吸中枢的兴奋(图 5-20B)。可是,脑脊液中碳酸酶含量很少, CO2 与水的水合反应很慢,所以对 CO2 的反应有一定的时间延迟。血液中的 H +不易以通过血液屏障,故血 液 pH 的变化对中枢化学感受器的直接作用不大,也较缓慢。 中枢化学感受器与外周化学感受器不同,它不感受缺 O2 的刺激,但对 CO2 的敏感性比外周的主,反应潜 伏期较长。中枢化学感受器的作用可能是调节脑脊液的[H+ ],使 中枢神经系统有一稳定的 pH 环境,而 外周化学感受器的作用主要是在机体低 O2 时,维持对呼吸的驱动。 (二)CO2、H +和 O2 对呼吸的影响 1.CO2 的影响 很早已经知道,在麻醉动物或人,动脉血液 PCO2 降得很低时可发生呼吸暂停。因此,一 定水平的 PCO2 对维持呼吸和呼吸中枢的兴奋性是必要的,CO2 是调节呼吸的最重要的生理性体液因子。 吸入含 CO2 的混合气,将使肺泡气 PCO2 长高,动脉血 PCO2 也随之升高,呼吸加深加快,肺通气量增加(图 5-21)。通过肺通气量的增大可能增加 CO2 的清除,肺泡气和动脉血 PCO2 还可维持于接近正常水平。但 是,当吸入气 CO2 陡升,CO2 堆积,压抑中枢神经系统的活动,包括呼吸中枢,发生呼吸困难、头痛、头 昏,甚至昏迷,出现 CO2 麻醉。对 CO2 的反应,有个体差异,还受许多因素影响,如疾病或药物。总之 CO2 在呼吸调节中是经常起作用的最重要的化学刺激,在一定范围内动脉血 PCO2 的升高,可以加强对呼 吸的刺激作用,但超过一定限度则有压抑和麻醉效应。 CO2 刺激呼吸是通过两条途径实现的,一是通过刺激中枢化学感受器再兴奋呼吸中枢:二是刺激外周化 学感受器,冲动窦神经和迷走神经传入延髓呼吸有关疑团,反射性地使呼吸加深、加快,增加肺通气。 但两条途径中前者是主要的。因为去掉外周化学感受器的作用之后,CO2 的通气反应仅下降约 20%,可 见中枢化学感受器在 CO2 通气反应中起主要作用;动脉血 PCO2 只需升高 0.266kPa(2mmHg)就可刺激中枢 化学感受器,出现通气加强反应,如刺激外周化学感受器,则需升高 1.33kPa(10mmHg)。不过,在下述 情况下,外周化学感受器的作用可能是重要的:因为中枢化学感受器的反应慢,所以当动脉血 PCO2 突 然大增时,外周化学感受器在引起快速呼吸反应中可起重要作用;当中枢化学感受器到抑制,对 CO2 的 反应降低时,外周化学感受器就起重要作用