第四节甲状腺 甲状腺是人体内最大的内分泌腺,平均生理约为20-25g。甲状腺内含有许多大小不等的圆 形或椭圆形腺泡。腺泡是由单层的上皮细胞围成,腺泡腔内充满胶质。胶质是腺泡上皮细胞 的分泌物,主要成分为甲状腺球蛋白。腺泡上皮细胞是甲状腺激素的合成与释放的部位,而 腺泡腔的胶质是激素有贮存库。腺泡上皮细胞的形态物质及胶质的量随甲状腺功能形态的不 岢发生相应的变化。腺泡上皮细胞通常为立方形,当甲状腺受到刺激而功能活跃时,细胞变 高呈低柱状,胶质减少:反之,细胞变低呈扁平形,而胶质增多。 在甲状腺腺泡之间和腺泡上皮细胞之间有滤泡旁细胞,又称C细胞,分泌降钙素 甲状腺激素的合成与代谢 甲状腺激素主要有甲状腺素,又称甲碘甲腺原氨酸 ( thyroxine,3,5,3’,5’- tetraiodothyronine,T)和三碘甲腺原氨酸 (3,5,3’- triiodothyronine,T3)两种,它们都是酷氨酸碘化物。另外,甲状腺也可合成极 少量的逆一T3(3,3’,5-T3或 reverse T3,rT3),它不具有甲状腺激素有生物活性(图11-8)。 -CH, CH COOH (T:I NHs HO< -CH, CH COOH (Ty) NH HO - CH: CH COOH (rT3 NII
第四节 甲状腺 甲状腺是人体内最大的内分泌腺,平均生理约为 20-25g。甲状腺内含有许多大小不等的圆 形或椭圆形腺泡。腺泡是由单层的上皮细胞围成,腺泡腔内充满胶质。胶质是腺泡上皮细胞 的分泌物,主要成分为甲状腺球蛋白。腺泡上皮细胞是甲状腺激素的合成与释放的部位,而 腺泡腔的胶质是激素有贮存库。腺泡上皮细胞的形态物质及胶质的量随甲状腺功能形态的不 岢发生相应的变化。腺泡上皮细胞通常为立方形,当甲状腺受到刺激而功能活跃时,细胞变 高呈低柱状,胶质减少;反之,细胞变低呈扁平形,而胶质增多。 在甲状腺腺泡之间和腺泡上皮细胞之间有滤泡旁细胞,又称 C 细胞,分泌降钙素。 一、甲状腺激素的合成与代谢 甲状腺激素主要有甲状腺素,又称甲碘甲腺原氨酸 (thyroxine,3,5,3’,5’-tetraiodotyyronine,T4)和三碘甲腺原氨酸 (3,5,3’-triiodothyronine,T3)两种,它们都是酷氨酸碘化物。另外,甲状腺也可合成极 少量的逆-T3(3,3’,5’-T3 或 reverse T3,rT3),它不具有甲状腺激素有生物活性(图 11-8)
图11-8甲状腺激素有化学结构 甲状腺激素合成的原料有碘和甲状腺球蛋白,在甲状腺球蛋白的酪氨酸残基上发生碘化,并 合成甲状腺激素。人每天从食物中大约摄碘100-200μg,占合身碘量的90%。因此,甲状腺 与碘代谢的关系极为密切 在胚胎期11-12周,胎儿甲状腺开始有合成甲状腺激素的能力,到13-14周在胎儿垂体促甲 状腺激素的刺激下,甲状腺加强激素的分泌,这对胎儿脑的发育起着关键作用,因为母体的 甲状腺激素进入胎儿体内的量很少。 甲状腺激素的合成过程包括三步: (一)甲状腺腺泡聚碘 由肠吸收的碘,以I形式存在于血液中,浓度为250μg/L,而μg/内I浓度比血液高20-25 倍,加上甲状腺上皮细胞膜静息电位为-50mV,因此,I从血液转运进入甲状腺上皮细胞内, 必须逆着电化学梯度面进行主动转运,并消耗能量。在甲状腺腺泡上皮细胞在底面的膜上, 可能存在I转运蛋白,它依赖NaˉK-ATP酶活动提供能量来完全I的主动转运,因为用哇巴 因抑制ATP酶,则聚碘作用立即发生障碍。有一些离子,如过氯酸盐的CO04、硫氰桎卤的 SCNGN I竟争转运机制,因此能抑制甲状腺的聚碘作用。摘除垂体可降低聚碘能力,而给予 TSH则促进聚碘。用同位素(NaI)示踪法观察甲状腺对放射性碘的摄取,在正常情况下有 20%-30%的碘被甲状腺摄取,临床常用摄取放射性碘的能力来检查与判断甲状腺的功能状态 (二)I的活化 摄入腺泡上皮细胞的I,在过氧化酶的作用下被活化,活化的部位在腺泡上皮细胞项端质膜 微绒毛与腺泡腔交界处(图11-9)。活化过程的本质,尚未确定,可能是由I变成L2或I° 或是与过氧化酶形成某种复合物
图 11-8 甲状腺激素有化学结构 甲状腺激素合成的原料有碘和甲状腺球蛋白,在甲状腺球蛋白的酪氨酸残基上发生碘化,并 合成甲状腺激素。人每天从食物中大约摄碘 100-200μɡ,占合身碘量的 90%。因此,甲状腺 与碘代谢的关系极为密切。 在胚胎期 11-12 周,胎儿甲状腺开始有合成甲状腺激素的能力,到 13-14 周在胎儿垂体促甲 状腺激素的刺激下,甲状腺加强激素的分泌,这对胎儿脑的发育起着关键作用,因为母体的 甲状腺激素进入胎儿体内的量很少。 甲状腺激素的合成过程包括三步: (一)甲状腺腺泡聚碘 由肠吸收的碘,以 I -形式存在于血液中,浓度为 250μg/L,而 μg/L 内 I -浓度比血液高 20-25 倍,加上甲状腺上皮细胞膜静息电位为-50mV,因此,I -从血液转运进入甲状腺上皮细胞内, 必须逆着电化学梯度面进行主动转运,并消耗能量。在甲状腺腺泡上皮细胞在底面的膜上, 可能存在 I -转运蛋白,它依赖 Na+ -K + -ATP 酶活动提供能量来完全 I -的主动转运,因为用哇巴 因抑制 ATP 酶,则聚碘作用立即发生障碍。有一些离子,如过氯酸盐的 COO4 -、硫氰桎卤的 SCNGN I-竞争转运机制,因此能抑制甲状腺的聚碘作用。摘除垂体可降低聚碘能力,而给予 TSH 则促进聚碘。用同位素(Na131I)示踪法观察甲状腺对放射性碘的摄取,在正常情况下有 20%-30%的碘被甲状腺摄取,临床常用摄取放射性碘的能力来检查与判断甲状腺的功能状态。 (二)I -的活化 摄入腺泡上皮细胞的 I -,在过氧化酶的作用下被活化,活化的部位在腺泡上皮细胞项端质膜 微绒毛与腺泡腔交界处(图 11-9)。活化过程的本质,尚未确定,可能是由 I -变成 I2或 I 0。 或是与过氧化酶形成某种复合物
呼F: TG 腺泡腔联质 TPO 耦联 MIT DITDIT MII MITTA T PIT I+TO TG 胶质 线 状腺细胞 体 MT水解 核糖休 DIT 碘 而萄 图11-9甲状腺激素合成及代谢示意图 TPO:过氧化酶TG:甲状球蛋白 I的活化是碘得以取代酪氨酸残基上氢原子的先决条件。如先天缺乏过剩,I不以活化,将 使甲状腺激素有合成发生障碍
图 11-9 甲状腺激素合成及代谢示意图 TPO:过氧化酶 TG:甲状球蛋白 I -的活化是碘得以取代酪氨酸残基上氢原子的先决条件。如先天缺乏过剩,I -不以活化,将 使甲状腺激素有合成发生障碍
(三)酷氨酸碘化与甲状腺激素的合成 在腺泡上皮细胞粗面内质网的核糖体上,可形成一种由四个肽链组成的大分子糖蛋白,即甲 状腺球蛋白( thyroglobulin,TG),其分子量为670000,有3%的酪氨酸残基。碘化过程就 是发生在甲状腺球蛋白的酪氨酸残基上,10%的酪氨酸残基可被碘化。放射自显影实验证明, 注入放射性碘几分钟后,即可在甲状腺腺泡上皮细胞微绒毛与腺泡腔壁的上皮细胞残部,即 能碘化甲状腺球蛋白,说明碘化过程发生在甲状腺腺泡上皮细胞微绒毛与腺泡交界处。 甲状腺球蛋白酪氨酸残基上的氢原子可被碘原子取代或碘化,首先生成一碘酪氨酸残基 (MIT)和二碘酪氨残基(DIT),然后两个分子的DI耦联生成四碘甲腺原氨酸(T) 个分子的MIˆ与一个分子的D发生耦联,形成三碘甲腺原氨酸(T3),还能合成极少量的 rTs(图11-9) 上述酪氨酸的碘化和碘化酪氨酸的耦联作用,都是在甲状腺球蛋白的分子上进行的,所在甲 状腺球蛋白的分子上既含有酪氨酸、碘化酪氨酸,也常含有MIT、DIl和T及T3。在一个甲 状腺球蛋白分子上,T与T3之比为20:1,这种比值常受碘含量的影响,当甲状腺内碘化活 动增强时,DIˆ增多,T含量也相应增加,在缺碘时,MIT增多,则Ts含量明显增加。 甲状腺过氧化酶是由腺上皮细胞的核糖体生成的,它是一种含铁卟啉的蛋白质,分子量为 60000-10000,在腺上皮顶缘的微绒毛处分布最多。实验证明,甲状腺过氧化酶的活性受 TSH的调控,大鼠摘除垂体48h后,甲状腺过氧化酶活性消失,注入TSH后此酶活性再现。 甲状腺过氧化酶的作用是促进碘活化、酪氨酸残基碘化及碘化酪氨酸的耦联等,所以,甲状 腺过氧化酶晨甲状腺激素的合成过程中起关键作用,抑制此酶活性的药物,如硫尿嘧啶,便 可抑制甲状腺激素的合成,可用于治疗甲状腺功能亢进 (四)甲状腺激素有贮存、释放、运输与代谢 1.贮存在甲状腺球蛋白上形成的甲状腺激素,在腺泡腔内以胶质的形式贮存。甲状腺激素 有贮存有两个特点:一是贮存于细胞外(腺泡腔内):二是贮存的量很大,可供机体利用 50-120天之久,在激素贮存的量上居首位,所以应用抗甲状腺药物时,用药时间需要较长 才能奏效
(三)酷氨酸碘化与甲状腺激素的合成 在腺泡上皮细胞粗面内质网的核糖体上,可形成一种由四个肽链组成的大分子糖蛋白,即甲 状腺球蛋白(thyroglobulin,TG),其分子量为 670000,有 3%的酪氨酸残基。碘化过程就 是发生在甲状腺球蛋白的酪氨酸残基上,10%的酪氨酸残基可被碘化。放射自显影实验证明, 注入放射性碘几分钟后,即可在甲状腺腺泡上皮细胞微绒毛与腺泡腔壁的上皮细胞残部,即 能碘化甲状腺球蛋白,说明碘化过程发生在甲状腺腺泡上皮细胞微绒毛与腺泡交界处。 甲状腺球蛋白酪氨酸残基上的氢原子可被碘原子取代或碘化,首先生成一碘酪氨酸残基 (MIT)和二碘酪氨残基(DIT),然后两个分子的 DIT 耦联生成四碘甲腺原氨酸(T4);一 个分子的 MIT 与一个分子的 DIT 发生耦联,形成三碘甲腺原氨酸(T3),还能合成极少量的 rT3(图 11-9) 上述酪氨酸的碘化和碘化酪氨酸的耦联作用,都是在甲状腺球蛋白的分子上进行的,所在甲 状腺球蛋白的分子上既含有酪氨酸、碘化酪氨酸,也常含有 MIT、DIT 和 T4 及 T3。在一个甲 状腺球蛋白分子上,T4 与 T3 之比为 20:1,这种比值常受碘含量的影响,当甲状腺内碘化活 动增强时,DIT 增多,T4 含量也相应增加,在缺碘时,MIT 增多,则 T3 含量明显增加。 甲状腺过氧化酶是由腺上皮细胞的核糖体生成的,它是一种含铁卟啉的蛋白质,分子量为 60000-100000,在腺上皮顶缘的微绒毛处分布最多。实验证明,甲状腺过氧化酶的活性受 TSH 的调控,大鼠摘除垂体 48h 后,甲状腺过氧化酶活性消失,注入 TSH 后此酶活性再现。 甲状腺过氧化酶的作用是促进碘活化、酪氨酸残基碘化及碘化酪氨酸的耦联等,所以,甲状 腺过氧化酶晨甲状腺激素的合成过程中起关键作用,抑制此酶活性的药物,如硫尿嘧啶,便 可抑制甲状腺激素的合成,可用于治疗甲状腺功能亢进。 (四)甲状腺激素有贮存、释放、运输与代谢 1.贮存 在甲状腺球蛋白上形成的甲状腺激素,在腺泡腔内以胶质的形式贮存。甲状腺激素 有贮存有两个特点:一是贮存于细胞外(腺泡腔内);二是贮存的量很大,可供机体利用 50-120 天之久,在激素贮存的量上居首位,所以应用抗甲状腺药物时,用药时间需要较长 才能奏效
2.释放当甲状腺受到TSH刺激后,腺泡细胞顶端即活跃起来,伸出伪足,将含有T4、T3 及其他多种碘化酪酸残基的甲状腺球蛋白胶质小滴,通过吞饮作用,吞入腺细胞内(图 11-9)。吞入的甲状腺球蛋白随即与溶酶体融合而形成吞噬体,并在溶酶体蛋白水解酶的作 用下,将T4、T3以及MIT和DIT水解下来。甲状腺球蛋白分子较大,一般不易进入血液循环, 而MIT和DIT的分子虽然较小,但很快受脱碘酶的作用而脱碘,脱下来的碘大部分贮存在 甲状腺内,供重新利用合成激素,另一小部分从腺泡上皮细胞释出,进入血液。T4和T对 腺泡上皮细胞内的脱碘不敏感,可迅速进入血液。此外,尚有微量的rT、MI和DIT也可 从甲状腺释放,进入血中。已经脱掉T、T3、MT和DIˆ的甲状腺球蛋白,则被溶酶体中的 蛋白水解酶所水解 由于甲状腺球蛋白分子上的T4数量远远超过T,因此甲状腺分泌的激素主要是T4,约占总 量的90%以上,T3的分泌量较少,但T3的生物活性比T4约大5倍 3.运输T4与T释放入血之后,以两种形式在血液中运输,一种是与血浆蛋白结合,另一种 则呈游离状态,两者之间可互相转化,维持动态平衡。游离的甲状腺激素在血液中含量甚少, 然而正是这些游离的激素才能进入细胞发挥作用,结合型的甲状腺激素是没有生物活性的 能与甲状腺激素结合的血浆蛋白有三种:甲状腺素结合球蛋白( thyroxine- binding globulin,TBG)、甲状腺素结合前白蛋白( thyroxine- binding prealbumin,TBPA)与白蛋白。 它们可与T和T发生不同程度的结合。血液中T有99.8%是与蛋白质结合,其余10%与白蛋 白结合。血中T4与TBG的结合受TBG含量与T4含量变化的影响,TBG在血浆听浓度为10mg/L 可以结合T100-260μg。T与各种蛋白的亲和力小得多,主要与TBG结合,但也只有T4结合 量的3%。所以,T主要以游离形式存在。正常成年人血清T4浓度为51-142nmo1/L,T3浓度 为1.2-3.4nmol/L 4.代谢血浆T4半衰期为7天,半衰期为1.5天,20%的T与T在肝内降解,也葡萄糖醛酸 或硫酸结合后,经胆汁排入小肠,在小肠内重吸收极少,绝大部分被小肠液进一步分解,随 粪排出。其余80%的T在外周组织脱碘酶(5’-脱碘酶或5-脱碘酶)的作用下,产生T3(占 45%)与rT3(占55%)。T脱碘变成T3是T3的主要来源,血液中的T有75%来自T4,其余来自 甲状腺;r仅有少量由甲状腺分泌,绝大部分是在组织内由T脱碘而来。由于T3的作用比 T大5倍,所以脱碘酶的活性将影响T4在组织内发挥作用,如T4浓度减少可使T转化为T3 增加,而使rIs减少。另外妊娠、饥饿、应激、代谢紊乱、肝疾病、肾功能衰竭等均会使T
2.释放 当甲状腺受到 TSH 刺激后,腺泡细胞顶端即活跃起来,伸出伪足,将含有 T4、T3 及其他多种碘化酪酸残基的甲状腺球蛋白胶质小滴,通过吞饮作用,吞入腺细胞内(图 11-9)。吞入的甲状腺球蛋白随即与溶酶体融合而形成吞噬体,并在溶酶体蛋白水解酶的作 用下,将 T4、T3 以及 MIT 和 DIT 水解下来。甲状腺球蛋白分子较大,一般不易进入血液循环, 而 MIT 和 DIT 的分子虽然较小,但很快受脱 碘酶的作用而脱碘,脱下来的碘大部分贮存在 甲状腺内,供重新利用合成激素,另一小部分从腺泡上皮细胞释出,进入 血液。T4 和 T3 对 腺泡上皮细胞内的脱碘不敏感,可迅速进入血液。此外,尚有微量的 rT3、MIT 和 DIT 也可 从甲状腺释放,进入血中。已经脱掉 T4、T3、MIT 和 DIT 的甲状腺球蛋白,则被溶酶体中的 蛋白水解酶所水解。 由于甲状腺球蛋白分子上的 T4 数量远远超过 T3,因此甲状腺分泌的激素主要是 T4,约占总 量的 90%以上,T3 的分泌量较少,但 T3 的生物活性比 T4 约大 5 倍 3.运输 T4 与 T3 释放入血之后,以两种形式在血液中运输,一种是与血浆蛋白结合,另一种 则呈游离状态,两者之间可互相转化,维持动态平衡。游离的甲状腺激素在血液中含量甚少, 然而正是这些游离的激素才能进入细胞发挥作用,结合型的甲状腺激素是没有生物活性的。 能与甲状腺激素结合的血浆蛋白有三种:甲状腺素结合球蛋白(thyroxine-binding globulin,TBG)、甲状腺素结合前白蛋白(thyroxine-binding prealbumin,TBPA)与白蛋白。 它们可与 T4 和 T3 发生不同程度的结合。血液中 T4有 99.8%是与蛋白质结合,其余 10%与白蛋 白结合。血中 T4 与 TBG 的结合受 TBG 含量与 T4 含量变化的影响,TBG 在血浆听浓度为 10mg/L, 可以结合 T4100-260μg。T3 与各种蛋白的亲和力小得多,主要与 TBG 结合,但也只有 T4 结合 量的 3%。所以,T3 主要以游离形式存在。正常成年人血清 T4 浓度为 51-142nmol/L,T3 浓度 为 1.2-3.4nmol/L。 4.代谢 血浆 T4 半衰期为 7 天,半衰期为 1.5 天,20%的 T4 与 T3 在肝内降解,也葡萄糖醛酸 或硫酸结合后,经胆汁排入小肠,在小肠内重吸收极少,绝大部分被小肠液进一步分解,随 粪排出。其余 80%的 T4 在外周组织脱碘酶(5’- 脱碘酶或 5-脱碘酶)的作用下,产生 T3(占 45%)与 rT3(占 55%)。T4 脱碘变成 T3 是 T3 的主要来源,血液中的 T3 有 75%来自 T4,其余来自 甲状腺;rT3 仅有少量由甲状腺分泌,绝大部分是在组织内由 T4 脱碘而来。由于 T3 的作用比 T4 大 5 倍,所以脱碘酶的活性将影响 T4 在组织内发挥作用,如 T4 浓度减少可使 T4 转化为 T3 增加,而使 rT3 减少。另外妊娠、饥饿、应激、代谢紊乱、肝疾病、肾功能衰竭等均会使 T4
转化为rT3增多。T3或r3可再经脱碘变成二碘、一碘以及不含碘的甲状腺氨酸。另外,还 有少量的T与T在肝和肾组织脱氨基和羧基,分别形成四碘甲状腺醋酸与在三碘甲状腺醋 酸,并随尿排出体外。 甲状腺激素的生物学作用 T4与T都具有生理作用。由于T在外周组织中可转化为T3,而且T3的活性较大,曾使人认 为T4可能是T激素原,T4只有通过T3才有作用。目前认为,T4不仅可作为T的激素原,而 且其本身也具有激素作用,约占全部甲状腺激素作用的35%左右。临床观察发现,部分甲状 腺功能低下患者的血中Ts浓度强:另外,实验证明,在甲状腺激素作用的细胞核受体上 既存在T结合位点,也有T结合位点,T或T4与其结合位点的亲和力是不同的,T3比T高 10倍。这些资料提示,T本身也具有激素作用 甲状腺激素的主要作用是促进物质与能量代谢,促进生长和发育过程。机体未完全分化与已 分化的组织,对甲状腺激素的反应可以不同,而成年后,不同的组织对甲状腺的敏感性也有 差别。甲状腺激素除了与核受体结合,影响转录过程外,在核糖体、线粒体、以及细胞膜上 也发现了它的结合位点,可能对转录后的过程、线粒体的生物氧化作用以及膜的转运功能均 有影响,所以,甲状腺激素的作用机制十分复杂 (一)对代谢的影响 1.产热效应甲状腺激素可提高绝大多数组织有耗氧率,增加产热量。有人估计,1mgT:可 使组织产热增加,提高基础代谢率28%。给动物注射甲状腺激素后,需要经过一段较长时间 的潜伏期才能出现生热作用。T4为24-48h,而T为18-36h,T的生热作用比T强3-5倍 但持续时间较短。给动物注射T或T后,取出各种组织进入离体实验表明,心、肝、骨骼 肌和肾等组织耗氧率明显增加,但另一些组织,如脑、肺、性腺、脾、淋巴结和皮肤等组织 的耗氧率则不受影响。在胚胎期胎儿大脑组织可受甲状腺激素的作用而增加耗氧率,但出生 后,大脑组织就失去了这种反应能力 近年的研究表明,动物注射甲状腺激素后,心、肝、肾和骨骼肌等组织出现产热效应时, Na'-K-ATP酶活性明显升高,如用哇巴因抑制此酶活性,则甲状腺激素的产热效应可完全被 消除。又如,甲状腺功能低下的大鼠,血中甲状腺激素含量下降,其肾组织细胞膜Naˆ-K-ATP
转化为 rT3 增多。T3 或 rT3 可再经脱碘变成二碘、一碘以及不含碘的甲状腺氨酸。另外,还 有少量的 T4 与 T3 在肝和肾组织脱氨基和羧基,分别形成四碘甲状腺醋酸与在三碘甲状腺醋 酸,并随尿排出体外。 二、甲状腺激素的生物学作用 T4 与 T3 都具有生理作用。由于 T4 在外周组织中可转化为 T3,而且 T3 的活性较大,曾使人认 为 T4 可能是 T3 激素原,T4 只有通过 T3 才有作用。目前认为,T4不仅可作为 T3的激素原,而 且其本身也具有激素作用,约占全部甲状腺激素作用的 35%左右。临床观察发现,部分甲状 腺功能低下患者的血中 T3 浓度强;另外,实验证明,在甲状腺激素作用的细胞核受体上, 既存在 T3 结合位点,也有 T4 结合位点,T3 或 T4 与其结合位点的亲和力是不同的,T3比 T4高 10 倍。这些资料提示,T4 本身也具有激素作用。 甲状腺激素的主要作用是促进物质与能量代谢,促进生长和发育过程。机体未完全分化与已 分化的组织,对甲状腺激素的反应可以不同,而成年后,不同的组织对甲状腺的敏感性也有 差别。甲状腺激素除了与核受体结合,影响转录过程外,在核糖体、线粒体、以及细胞膜上 也发现了它的结合位点,可能对转录后的过程、线粒体的生物氧化作用以及膜的转运功能均 有影响,所以,甲状腺激素的作用机制十分复杂。 (一)对代谢的影响 1.产热效应 甲状腺激素可提高绝大多数组织有耗氧率,增加产热量。有人估计,1mgT4 可 使组织产热增加,提高基础代谢率 28%。给动物注射甲状腺激素后,需要经过一段较长时间 的潜伏期才能出现生热作用。T4 为 24-48h,而 T3 为 18-36h,T3 的生热作用比 T4 强 3-5 倍, 但持续时间较短。给动物注射 T4 或 T3 后,取出各种组织进入离体实验表明,心、肝、骨骼 肌和肾等组织耗氧率明显增加,但另一些组织,如脑、肺、性腺、脾、淋巴结和皮肤等组织 的耗氧率则不受影响。在胚胎期胎儿大脑组织可受甲状腺激素的作用而增加耗氧率,但出生 后,大脑组织就失去了这种反应能力。 近年的研究表明,动物注射甲状腺激素后,心、肝、肾和骨骼肌等组织出现产热效应时, Na+ -K + -ATP 酶活性明显升高,如用哇巴因抑制此酶活性,则甲状腺激素的产热效应可完全被 消除。又如,甲状腺功能低下的大鼠,血中甲状腺激素含量下降,其肾组织细胞膜 Na+ -K + -ATP
酶活性减弱,若给予T,酶的活性可恢复甚至增加,由此看来,甲状腺激素的产热作用与 Na-K-ATP酶的关系十分密切。另外,有人认为,甲状腺激素也能促进脂肪酸氧化,产生 大量的热能 甲状腺功能亢进时,产热量增加,基础代谢率升主患者喜凉怕热,极易出汗:而甲状腺功能 低下时,产热量减少,基础代谢率降低,患者喜热恶寒,两种情况无法不能适应环境温度的 变化 2.对蛋白质、糖和脂肪代谢的影响 (1)蛋白质代谢:T或T3作用于核受体,刺激DNA转录过程,促进mRM形成,加速蛋白质 与各种酶的生成。肌肉、肝与肾的蛋白质合成明显增加,细胞数量增多,体积增大,尿氮减 少,表现为正氮平衡。甲状腺激素分泌不足时,蛋白质合成减少,肌肉收缩无力,但组织间 的粘蛋白增多,可结合大量的正离子和水分子,引起粘液性水肿( myxedema)。甲状腺分泌 过多时,则加速蛋白质分解,特别是促进骨骼蛋白质分解,使肌酐含量降低,肌肉收缩元力 尿酸含量增加,并可促进骨的蛋白质分解,从而导致血钙升高和骨质疏松,尿钙的排出量增 (2)糖代谢:甲状腺激素促进小肠粘膜对糖的吸收,增强糖原分解,抑制糖原合成,并能 增强肾上腺素、胰高血糖素、皮质醇和生长素的生糖作用,因此,甲状腺激素有升主血糖的 趋势:但是,由于T与T还可加强外周组织对糖的利用,也有降低血糖的作用。甲状腺功 能亢进时,血糖常升高,有时出现糖尿。 (3)脂肪代谢:甲状腺激素促进脂肪酸氧化,增强儿茶酚胺与胰高血糖素对脂肪的分解作 用。T与T3既促进胆固醇的合成,又可通过肝加速胆固醇的降解,而且分解的速度超过合成。 所以,甲状腺功能亢进患者血中胆固醇含量低于正常。 甲状腺功能亢进时,由于蛋白质、糖和脂肪的分解代谢增强,所以患者常感饥饿,食欲旺盛, 且有明显消瘦。 (二)对生成与发育的影响
酶活性减弱,若给予 T4,酶的活性可恢复甚至增加,由此看来,甲状腺激素的产热作用与 Na+ -K + -ATP 酶的关系十分 密切。另外,有 人认为,甲状腺激素也能促进脂肪酸氧化,产生 大量的热能。 甲状腺功能亢进时,产热量增加,基础代谢率升主患者喜凉怕热,极易出汗;而甲状腺功能 低下时,产热量减少,基础代谢率降低,患者喜热恶寒,两种情况无法不能适应环境温度的 变化。 2.对蛋白质、糖 和脂肪代谢的影响 (1)蛋白质代谢:T4或 T3 作用于核受体,刺激 DNA 转录过程,促进 mRNA 形成,加速蛋白质 与各种酶的生成。肌肉、肝与肾的蛋白质合成明显增加,细胞数量增多,体积增大,尿氮减 少,表现为正氮平衡。甲状腺激素分泌不足时,蛋白质合成减少,肌肉收缩无力,但组织间 的粘蛋白增多,可结合大量的正离子和水分子,引起粘液性水肿(myxedema)。甲状腺分泌 过多时,则加速蛋白质分解,特别是促进骨骼蛋白质分解,使肌酐含量降低,肌肉收缩元力, 尿酸含量增加,并可促进骨的蛋白质分解,从而导致血钙升高和骨质疏松,尿钙的排出量增 加。 (2)糖代谢:甲状腺激素促进小肠粘膜对糖的吸收,增强糖原分解,抑制糖原合成,并能 增强肾上腺素、胰高血糖素、皮质醇和生长素的生糖作用,因此,甲状腺激素有升主血糖的 趋势;但是,由于 T4 与 T3 还可加强外周组织对糖的利用,也有降低血糖的作用。甲状腺功 能亢进时,血糖常升高,有时出现糖尿。 (3)脂肪代谢:甲状腺激素促进脂肪酸氧化,增强儿茶酚胺与胰高血糖素对脂肪的分解作 用。T4 与 T3 既促进胆固醇的合成,又可通过肝加速胆固醇的降解,而且分解的速度超过合成。 所以,甲状腺功能亢进患者血中胆固醇含量低于正常。 甲状腺功能亢进时,由于蛋白质、糖和脂肪的分解代谢增强,所以患者常感饥饿,食欲旺盛, 且有明显消瘦。 (二)对生成与发育的影响
甲状腺激素具有促进组织分化、生长与发育成熟的作用。切除甲状腺的蝌蚪,生长与发育停 滞,不能变态成蛙,若及时给予甲状腺激素,又可恢复生长发育,包括长出肢体、尾巴消失, 躯体长大,发育成蛙。在人类和哺乳动物,甲状腺激素是维持正常生长也发育不可缺少的激 素,特别是对骨和脑的发育尢为重要。甲状腺功能低下的儿童,表现为以智力迟钝生身体矮 小为特征的呆小症(又称克汀病)。在胚胎期缺碘造成甲状腺激素合成不足,或出生后甲状 腺功能低下,脑的发育明显障碍,脑各部位的神经细胞变小,轴突、树突与髓鞘均减少,胶 质细胞数量也减少。神经组织内的蛋白质、磷脂以及各种重要的酶与递质的含量都减低。甲 状腺激素刺激骨化中心发育,软骨骨化,促进长骨和牙齿的生长。值得提出的是,在胚胎期 胎儿骨的生长并不必需甲状腺激素,所以患先天性甲状腺发育不全的胎儿,出生后身长可以 基本正常,但脑的发育已经受到程度不同的影响。在出生后数周至3-4个月后,就会表现出 明显的智力迟钝和长骨生长停滞。所以,在缺碘地区预防呆小症的发生,应在妊娠期注意补 充碘,治疗呆小症必须抓时机,应在生后三个月以前补给甲状腺激素,过迟难以奏效 (三)对神经系统的影响 甲状腺激素不但影响中枢系统的发育,对已分化成熟的神经系统活动也有作用。甲状腺功能 亢进时,中枢神经系统的兴奋性增高主要表现为注意力不易集中、过敏疑虑多愁善感、喜怒 失常、烦躁不安、睡眠不好而且多梦幻,以及肌肉纤颤等。相反,甲状腺功能低下时,中枢 神经系统兴奋性降低,出现记忆力减退,说话和行动迟缓,淡漠无怀与终日思睡状态。 甲状腺激素除了影响中枢神经系统活动外,也能兴奋交感神经系统,其作用机制还不十分清 另外,甲状腺激素对心脏的活动有明显影响。T与T3可使心率增快,心缩力增强,心输岀量 与心作功增加。甲状腺功能亢进患者心动过速,心肌可因过度耗竭而致心力衰竭。离体培养 的心细胞实验表明,甲状腺激素可直接作用于心肌,T能增加心肌细胞膜上β受体的数量 促进肾上腺素刺激心肌细胞内cAMP的生成。甲状腺激素促进心肌细胞肌质网释放Ca2,从 而激活与心肌收缩有关的蛋白质,增强收缩力 三、甲状腺功能的调节
甲状腺激素具有促进组织分化、生长与发育成熟的作用。切除甲状腺的蝌蚪,生长与发育停 滞,不能变态成蛙,若及时给予甲状腺激素,又可恢复生长发育,包括长出肢体、尾巴消失, 躯体长大,发育成蛙。在人类和哺乳动物,甲状腺激素是维持正常生长也发育不可缺少的激 素,特别是对骨和脑的发育尢为重要。甲状腺功能低下的儿童,表现为以智力迟钝生身体矮 小为特征的呆小症(又称克汀病)。在胚胎期缺碘造成甲状腺激素合成不足,或出生后甲状 腺功能低下,脑的发育明显障碍,脑各部位的神经细胞变小,轴突、树突与髓鞘均减少,胶 质细胞数量也减少。神经组织内的蛋白质、磷脂以及各种重要的酶与递质的含量都减低。甲 状腺激素刺激骨化中心发育,软骨骨化,促进长骨和牙齿的生长。值得提出的是,在胚胎期 胎儿骨的生长并不必需甲状腺激素,所以患先天性甲状腺发育不全的胎儿,出生后身长可以 基本正常,但脑的发育已经受到程度不同的影响。在出生后数周至 3-4 个月后,就会表现出 明显的智力迟钝和长骨生长停滞。所以,在缺碘地区预防呆小症的发生,应在妊娠期注意补 充碘,治疗呆小症必须抓时机,应在生后三个月以前补给甲状腺激素,过迟难以奏效。 (三)对神经系统的影响 甲状腺激素不但影响中枢系统的发育,对已分化成熟的神经系统活动也有作用。甲状腺功能 亢进时,中枢神经系统的兴奋性增高主要表现为注意力不易集中、过敏疑虑多愁善感、喜怒 失常、烦躁不安、睡眠不好而且多梦幻,以及肌肉纤颤等。相反,甲状腺功能低下时,中枢 神经系统兴奋性降低,出现记忆力减退,说话和行动迟缓,淡漠无怀与终日思睡状态。 甲状腺激素除了影响中枢神经系统活动外,也能兴奋交感神经系统,其作用机制还不十分清 楚。 另外,甲状腺激素对心脏的活动有明显影响。T4 与 T3 可使心率增快,心缩力增强,心输出量 与心作功增加。甲状腺功能亢进患者心动过速,心肌可因过度耗竭而致心力衰竭。离体培养 的心细胞实验表明,甲状腺激素可直接作用于心肌,T3 能增加心肌细胞膜上 β 受体的数量, 促进肾上腺素刺激心肌细胞内 cAMP 的生成。甲状腺激素促进心肌细胞肌质网释放 Ca2+,从 而激活与心肌收缩有关的蛋白质,增强收缩力。 三、甲状腺功能的调节
甲状腺功能活动主要受下丘脑与垂体的调节。下丘脑、垂体和甲状腺三个水平紧密联系,组 成下丘脑-垂体-甲状腺轴。此外,甲状腺还可进行一定程度的自身调节 (一)下丘脑-腺垂体对甲状腺的调节 腺垂体分泌的促甲状腺激素( thyroid stimulating hormone,TSH)是调节甲状腺功能的主 要激素。TSH是一种糖原白激素,分子量为28000,由a和β两个亚单位组成,a亚单位 有96个氨基酸残基,其氨基酸顺序与LH、FSH和hCG的a亚单位相似:β亚单位有110 个氨基酸残基,其顺序与以上三种激素有β亚单位完全不同。TSH的生物活性主要决定于 β亚单位,但水解下来的单独B来只有微弱的活性,只有a亚单位与β亚单位结合在 起共同作用,才能显出全部活性。 血清中TSH浓度为2-11mU/L,半衰期约60min。腺垂体TSHA呈脉冲式释放,每2-4h出现一 次波动,在脉冲式释放的基础上,还有日周期变化,血中TSH浓度清晨高而午后低。 TSH的作用是促进甲状腺激素有合成与释放。给予TSH最早出现的效果是甲状腺球蛋白水解 与T4T3的释放。给TSH数分钟内,甲状腺腺泡上皮细胞靠吞饮把胶质小滴吞入细胞内,加 速T与T的释放,随后增强碘的摄取和甲状腺激素的合成。TSH还能促进腺泡上皮细胞的葡 萄糖氧化,尤其经已糖化旁路,可提供过氧化酶作用所需要的还能型辅酶Ⅱ( NADPH)。TSH 的长期效应是刺激甲状腺细胞增生,腺体增大,这是由于TSH刺激腺泡上皮细胞核酸与蛋白 质合成增强的结果。切除垂体之后,血中TSH迅速消失,甲状腺发生萎缩,甲状腺激素分泌 明显减少 在甲状腺腺泡上皮细胞存在TSH受体,它是含有750个氨基酸残基的膜蛋白,分子量为 85000。TSH与其受体结合后,通过G蛋白激活腺苷酸环化酶,使cAMP生成增多,进而促进 甲状腺激素的释放与合成。TSH还可通过磷脂酰肌醇系统刺激甲状腺激素的释放与合成 有些甲状腺功能亢进患者,血中可出现一些免疫球蛋白物质,其中之一是人类刺激甲状腺免 疫球蛋白( human thyroid- stmulating immunoglobulin,HTSI),其化学结构与TSH相似, 它可与TSH竞争甲状腺细胞腺上的受体刺激甲状腺,这可能是引起甲状腺功能亢进的原因之
甲状腺功能活动主要受下丘脑与垂体的调节。下丘脑、垂体和甲状腺三个水平紧密联系,组 成下丘脑-垂体-甲状腺轴。此外,甲状腺还可进行一定程度的自身调节。 (一)下丘脑-腺垂体对甲状腺的调节 腺垂体分泌的促甲状腺激素(thyroid stimulating hormone,TSH)是调节甲状腺功能的主 要激素。TSH 是一种糖原白激素,分子量为 28000,由 α 和 β 两个亚单位组成,α 亚单位 有 96 个氨基酸残基,其氨基酸顺序与 LH、FSH 和 hCG 的 α 亚单位相似;β 亚单位有 110 个氨基酸残基,其顺序与以上三种激素有 β 亚单位完全不同。TSH 的生物活性主要决定于 β 亚单位,但水解下来的单独 β 来只有微弱的活性,只有 α 亚单位与 β 亚单位结合在一 起共同作用,才能显出全部活性。 血清中 TSH 浓度为 2-11mU/L,半衰期约 60min。腺垂体 TSHA 呈脉冲式释放,每 2-4h 出现一 次波动,在脉冲式释放的基础上,还有日周期变化,血中 TSH 浓度清晨高而午后低。 TSH 的作用是促进甲状腺激素有合成与释放。给予 TSH 最早出现的效果是甲状腺球蛋白水解 与 T4、T3 的释放。给 TSH 数分钟内,甲状腺腺泡上皮细胞靠吞饮把胶质小滴吞入细胞内,加 速 T4 与 T3 的释放,随后增强碘的摄取和甲状腺激素的合成。TSH 还能促进腺泡上皮细胞的葡 萄糖氧化,尤其经已糖化旁路,可提供过氧化酶作用所需要的还能型辅酶Ⅱ(NADPH) 。TSH 的长期效应是刺激甲状腺细胞增生,腺体增大,这是由于 TSH 刺激腺泡上皮细胞核酸与蛋白 质合成增强的结果。切除垂体之后,血中 TSH 迅速消失,甲状腺发生萎缩,甲状腺激素分泌 明显减少。 在甲状腺腺泡上皮细胞存在 TSH 受体,它是含有 750 个氨基酸残基的膜蛋白,分子量为 85000。TSH 与其受体结合后,通过 G 蛋白激活腺苷酸环化酶,使 cAMP 生成增多,进而促进 甲状腺激素的释放与合成。TSH 还可通过磷脂酰肌醇系统刺激甲状腺激素的释放与合成。 有些甲状腺功能亢进患者,血中可出现一些免疫球蛋白物质,其中之一是人类刺激甲状腺免 疫球蛋白(human thyroid-stmulating immunoglobulin,HTSI),其化学结构与 TSH 相似, 它可与 TSH 竞争甲状腺细胞腺上的受体刺激甲状腺,这可能是引起甲状腺功能亢进的原因之 一
腺垂体TSH分泌受下丘脑T的控制。下丘脑TRH神经元接受神经系统其他部位传来的信息 影响,把环境因素与TRH神经元活动联系起来,然后TⅫ神经元释放TR,作用于腺垂体。 例如,寒冷刺激的信息到达中枢神经中枢神经系统,一方面传入下丘脑体温调节中枢,同时 还与该中枢接近的TH神经元发生联系,促进T释放增多,进而使腺垂体T分泌增加。 在这一过程中,去甲上腺素趣了重要的递质作用,它能增强TRH神经元释放TRH,如阻断去 甲肾上腺素的合成,则机体对寒冷刺激引起的这一适应性反应大大减弱。另外,下丘脑还可 通过生长抑素减少或停止TRH的合成与释放。例如,应激刺激也可通过单胺能神经元影响生 长抑素的释放,如外科手术与严重创伤将引起生长抑素的释放,从而使腺垂体分泌的TRH 减少,T与T3的分泌水平降低,减少机体的代谢消耗,有利于创伤修复过程 (二)甲状腺激素的反馈调节 血中游离的T与T3浓度的升降,对腺垂体TSH的分泌起着经常性反馈调节作用。当血中游 离的T与T3浓度增高时,抑制TSH分泌。实验表明,甲状腺激素抑制TSH分泌的作用,是 由于甲状腺激素刺激腺垂体促甲状腺激素细胞产生一种抑制性蛋白,它使TSH的合成与释放 减少,并降低腺垂体对TRH的反应性。由于这种抑制作用需要通过新的蛋白质合成,所以需 要几小时后方能出现效果,而且可被放线菌D与放线菌酮所阻断。T4与T3比较,T对腺垂体 TSH分泌的抑制作用较强,血中T4与T3对腺垂体这种反馈作用与TRH的刺激作用,相互拮抗, 相互影响,对腺垂体TSH的分泌起着决定性作用。 关于甲状腺激素对下丘脑是否有反馈调节作用,实验结果很不一致,尚难有定论。 另外,有引起激素也可影响腺垂体分泌TSH,如雌激素可增强腺垂体对T阳H的反应,从而使 TSH分泌增加,而生长素与糖皮质激素则对TSH的分泌有抑制作用
腺垂体 TSH 分泌受下丘脑 TRH 的控制。下丘脑 TRH 神经元接受神经系统其他部位传来的信息 影响,把环境因素与 TRH 神经元活动联系起来,然后 TRH 神经元释放 TRH,作用于腺垂体。 例如,寒冷刺激的信息到达中枢神经中枢神经系统,一方面传入下丘脑体温调节中枢,同时 还与该中枢接近的 TRH 神经元发生联系,促进 TRH 释放增多,进而使腺垂体 TRH 分泌增加。 在这一过程中,去甲上腺素趣了重要的递质作用,它能增强 TRH 神经元释放 TRH,如阻断去 甲肾上腺素的合成,则机体对寒冷刺激引起的这一适应性反应大大减弱。另外,下丘脑还可 通过生长抑素减少或停止 TRH 的合成与释放。例如,应激刺激也可通过单胺能神经元影响生 长抑素的释放,如外科手术与严重创伤将引起生长抑素的释放,从而使腺垂体分泌的 TRH 减少,T4 与 T3 的分泌水平降低,减少机体的代谢消耗,有利于创伤修复过程。 (二)甲状腺激素的反馈调节 血中游离的 T4 与 T3 浓度的升降,对腺垂体 TSH 的分泌起着经常性反馈调节作用。当血中游 离的 T4 与 T3 浓度增高时,抑制 TSH 分泌。实验表明,甲状腺激素抑制 TSH 分泌的作用,是 由于甲状腺激素刺激腺垂体促甲状腺激素细胞产生一种抑制性蛋白,它使 TSH 的合成与释放 减少,并降低腺垂体对 TRH 的反应性。由于这种抑制作用需要通过新的蛋白质合成,所以需 要几小时后方能出现效果,而且可被放线菌 D 与放线菌酮所阻断。T4 与 T3 比较,T3 对腺垂体 TSH 分泌的抑制作用较强,血中 T4与 T3 对腺垂体这种反馈作用与 TRH 的刺激作用,相互拮抗, 相互影响,对腺垂体 TSH 的分泌起着决定性作用。 关于甲状腺激素对下丘脑是否有反馈调节作用,实验结果很不一致,尚难有定论。 另外,有引起激素也可影响腺垂体分泌 TSH,如雌激素可增强腺垂体对 TRH 的反应,从而使 TSH 分泌增加,而生长素与糖皮质激素则对 TSH 的分泌有抑制作用