第二章蛋白质的结构和功能 蛋白质( protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织 的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且 蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在 分子生物学学科中又是发展最快、最重要的部分之一, protein一词就是来自1938年Jons j Berzelius创造的希腊单词 protion,意为第一或最重要的意思 第一节蛋白质在生命活动中的重要功能 蛋白质是生命的物质基础,一切生命活动离不开蛋白质 蛋白质普遍存在于生物界,从病毒、细菌到动、植物都含有蛋白质,病毒除核酸外 几乎都由蛋白质组成,甚至朊病毒(pion)就只含蛋白质而不含核酸。蛋白质也是各种 生物体内含量最多的有机物质(表2-1)。人体内蛋白质含量就约占其干重的45%左右。 体内一些蛋白质的重要生理功能: (一)催化功能 (二)调节功能 (三)保护和支持功能 (四)运输功能 (五)储存和营养功能 (六)收缩和运动功能 (七)防御功能 (八)识别功能 (九)信息传递功能 十)基因表达调控功能 (十一)凝血功能 (十二)蛋白质的其他众多生理功能
1 第二章 蛋白质的结构和功能 蛋白质(protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织 的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且 蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在 分子生物学学科中又是发展最快、最重要的部分之一,protein 一词就是来自 1938 年 Jons J Berzelius 创造的希腊单词 protios,意为第一或最重要的意思。 第一节 蛋白质在生命活动中的重要功能 蛋白质是生命的物质基础,一切生命活动离不开蛋白质。 蛋白质普遍存在于生物界,从病毒、细菌到动、植物都含有蛋白质,病毒除核酸外 几乎都由蛋白质组成,甚至朊病毒(prion)就只含蛋白质而不含核酸。蛋白质也是各种 生物体内含量最多的有机物质(表 2-1)。人体内蛋白质含量就约占其干重的 45%左右。 体内一些蛋白质的重要生理功能: (一) 催化功能 (二) 调节功能 (三) 保护和支持功能 (四) 运输功能 (五) 储存和营养功能 (六) 收缩和运动功能 (七) 防御功能 (八) 识别功能 (九) 信息传递功能 (十) 基因表达调控功能 (十一) 凝血功能 (十二) 蛋白质的其他众多生理功能
第二节蛋白质的分子组成 蛋白质的元素组成和分子量 蛋白质是大分子化合物,相对分子质量(M)一般上万,结构十分复杂,但都是由 C、H、O、N、S等基本元素组成,有些蛋白质分子中还含有少量Fe、P、Zn、Mn、Cu、 I等元素,而其中氮的含量相对恒定,占13%~19%,平均为16%,因此通过样品中含 氮量的测定,乘以625,即可推算出其中蛋白质的含量。 、蛋白质的氨基酸组成 大分子蛋白质的基本组成单位或构件分子( building- block molecule)是氨基酸 ( amino acid,AA)(表2一2)。在种类上,虽然自然界中存在着300多种氨基酸, 但构成蛋白质的只有20种氨基酸,且都是L,a-氨基酸,在蛋白质生物合成时它们 受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。 在20种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酰是亚氨基酸外,其余 COOH 均为L,a-氨基酸。氨基酸分子的结构通式为:H2N-C-R H )氨基酸的分类 20种氨基酸按其侧链R结构的不同,在化学中可分为脂肪族、芳香族和杂环氨基酸 三大类,分别含15种、2种和3种氨基酸。在脂肪族氨基酸中,3种是支链氨基酸,而 大多是直链氨基酸。在20种氨基酸中,有2种是含硫氨基酸和3种是含羟基的氨基酸。 在生物化学中,氨基酸是根据其酸性基团(羧基)和碱性基团(氨基、胍基、咪唑基) 的多寡而分为酸性氨基酸、碱性氨基酸和中性氨基酸三类,其中酸性氨基酸含2个羧基 和1个氨基,碱性氨基酸含2个或2个以上碱性基团和一个羧基,都属于含有可解离基 团的极性氨基酸,而中性氨基酸只含有1个羧基和1个氨基,在形成蛋白质分子时都被
2 第二节 蛋白质的分子组成 一、 蛋白质的元素组成和分子量 蛋白质是大分子化合物,相对分子质量(Mr)一般上万,结构十分复杂,但都是由 C、H、O、N、S 等基本元素组成,有些蛋白质分子中还含有少量 Fe、P、Zn、Mn、Cu、 I 等元素,而其中氮的含量相对恒定,占 13%~19%,平均为 16%,因此通过样品中含 氮量的测定,乘以 6.25,即可推算出其中蛋白质的含量。 二、 蛋白质的氨基酸组成 大分子蛋白质的基本组成单位或构件分子(building-block molecule)是氨基酸 (amino acid,AA)(表 2-2)。在种类上,虽然自然界中存在着 300 多种氨基酸, 但构成蛋白质的只有 20 种氨基酸,且都是 L,α-氨基酸,在蛋白质生物合成时它们 受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。 在 20 种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酰是亚氨基酸外,其余 均为L,α-氨基酸。氨基酸分子的结构通式为: R H | C | COOH H2N − − (一) 氨基酸的分类 20 种氨基酸按其侧链 R 结构的不同,在化学中可分为脂肪族、芳香族和杂环氨基酸 三大类,分别含 15 种、2 种和 3 种氨基酸。在脂肪族氨基酸中,3 种是支链氨基酸,而 大多是直链氨基酸。在 20 种氨基酸中,有 2 种是含硫氨基酸和 3 种是含羟基的氨基酸。 在生物化学中,氨基酸是根据其酸性基团(羧基)和碱性基团(氨基、胍基、咪唑基) 的多寡而分为酸性氨基酸、碱性氨基酸和中性氨基酸三类,其中酸性氨基酸含 2 个羧基 和 1 个氨基,碱性氨基酸含 2 个或 2 个以上碱性基团和一个羧基,都属于含有可解离基 团的极性氨基酸,而中性氨基酸只含有 1 个羧基和 1 个氨基,在形成蛋白质分子时都被
结合掉,因此根据其侧链R有无极性再分为中性极性氨基酸和中性非极性氨基酸二个亚 类,中性极性氨基酸( polar AA)较亲水( hydrophilic),中性非极性氨基酸( non-polar AA) 较疏水( hydrophobic)(表2-3)。在形成大分子蛋白质严密的空间结构中,其组成氨基 酸侧链R的大小、形状,带电与极性与否,对蛋白质分子空间结构形成和生理功能关系 密切 蛋白质分子中尚含有一些经修饰的氨基酸,并无遗传密码编码,它们往往是在蛋白 质生物合成后,由其中相应氨基酸经加工修饰生成。如胱氨酸是由2个半胱氨酸脱氢氧 化生成,含有二硫键,存在于部分蛋白质分子中:而羟赖氨酸与羟脯氨酸来自蛋白质中 赖氨酸和脯氨酸的羟化,主要存在于胶原蛋白分子中,它与胶原蛋白分子结构的稳定与 功能均有关:一些凝血因子分子中含有γ一羧基谷氨酸,也来自蛋白质分子中谷氨酸的 羧化,且与其凝血活性密切有关;而一些酶蛋白分子中的丝氨酸、苏氨酸或酪氨酸羟基, 还可与磷酸结合被磷酸化等,更与酶活性的调节功能密切相关 (二)氨基酸的重要理化性质 1.两性电离与等电点(pl) 2.紫外吸收特征 3.脱水成肽反应 第三节蛋白质的分子结构 肽键和肽 肽键( peptide bond)是蛋白质分子中的主要共价键,性质比较稳定。它虽是单键 但具有部分双键的性质,难以自由旋转而有一定的刚性,因此形成肽键平面(图2-3), 则包括连接肽键两端的C=O、N一H和2个C。共6个原子的空间位置处在一个相对接 的平面上,而相邻2个氨基酸的侧链R又形成反式构型,从而形成肽键与肽链复杂的 空间结构 肽( peptide)是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。 肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等, 般含10个以下氨基酸组成的称寡肽( oligopeptide),由10个以上氨基酸组成的称多肽
3 结合掉,因此根据其侧链 R 有无极性再分为中性极性氨基酸和中性非极性氨基酸二个亚 类,中性极性氨基酸(polar AA)较亲水(hydrophilic),中性非极性氨基酸(non-polar AA) 较疏水(hydrophobic)(表 2-3)。在形成大分子蛋白质严密的空间结构中,其组成氨基 酸侧链 R 的大小、形状,带电与极性与否,对蛋白质分子空间结构形成和生理功能关系 密切。 蛋白质分子中尚含有一些经修饰的氨基酸,并无遗传密码编码,它们往往是在蛋白 质生物合成后,由其中相应氨基酸经加工修饰生成。如胱氨酸是由 2 个半胱氨酸脱氢氧 化生成,含有二硫键,存在于部分蛋白质分子中;而羟赖氨酸与羟脯氨酸来自蛋白质中 赖氨酸和脯氨酸的羟化,主要存在于胶原蛋白分子中,它与胶原蛋白分子结构的稳定与 功能均有关;一些凝血因子分子中含有γ-羧基谷氨酸,也来自蛋白质分子中谷氨酸的 羧化,且与其凝血活性密切有关;而一些酶蛋白分子中的丝氨酸、苏氨酸或酪氨酸羟基, 还可与磷酸结合被磷酸化等,更与酶活性的调节功能密切相关。 (二) 氨基酸的重要理化性质 1. 两性电离与等电点(pI) 2. 紫外吸收特征 3. 脱水成肽反应 第三节 蛋白质的分子结构 一、 肽键和肽 肽键(peptide bond)是蛋白质分子中的主要共价键,性质比较稳定。它虽是单键, 但具有部分双键的性质,难以自由旋转而有一定的刚性,因此形成肽键平面(图 2-3), 则包括连接肽键两端的 C═O、N-H和 2 个 Cα共 6 个原子的空间位置处在一个相对接 近的平面上,而相邻 2 个氨基酸的侧链 R 又形成反式构型,从而形成肽键与肽链复杂的 空间结构。 肽(peptide)是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。 肽按其组成的氨基酸数目为 2 个、3 个和 4 个等不同而分别称为二肽、三肽和四肽等, 一般含 10 个以下氨基酸组成的称寡肽(oligopeptide),由 10 个以上氨基酸组成的称多肽
( polypeptide),它们都简称为肽。肽链中的氨基酸已不是游离的氨基酸分子,因为其氨 基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸 残基( amino acid residue) 多肽有开链肽和环状肽。在人体内主要是开链肽。开链肽具有一个游离的氨基末端 和一个游离的羧基末端,分别保留有游离的α一氨基和α一羧基,故又称为多肽链的N 端(氨基端)和C端(羧基端),书写时一般将N端写在分子的左边,并用(H)表示, 并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的C端写在分子的右边,并 用(OH)来表示。目前已有约20万种多肽和蛋白质分子中的肽段的氨基酸组成和排列 顺序被测定了出来,其中不少是与医学关系密切的多肽,分别具有重要的生理功能或药 理作用。 多肽在体内具有广泛的分布与重要的生理功能。其中谷胱甘肽在红细胞中含量丰富,具 有保护细胞膜结构及使细胞内酶蛋白处于还原、活性状态的功能。而在各种多肽中,谷 胱甘肽的结构比较特殊,分子中谷氨酸是以其γ一羧基与半胱氨酸的α一氨基脱水缩合 成肽键的,且它在细胞中可进行可逆的氧化还原反应,因此有还原型与氧化型两种谷 近年来一些具有强大生物活性的多肽分子不断地被发现与鉴定,它们大多具有重要 的生理功能或药理作用,又如一些“脑肽”与机体的学习记忆、睡眠、食欲和行为都有 密切关系,这增加了人们对多肽重要性的认识,多肽也已成为生物化学中引人瞩目的研 究领域之 多肽和蛋白质的区别,一方面是多肽中氨基酸残基数较蛋白质少,一般少于50个 而蛋白质大多由100个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线 除分子量外,现在还认为多肽一般没有严密并相对稳定的空间结构,即其空间结构比较 易变具有可塑性,而蛋白质分子则具有相对严密、比较稳定的空间结构,这也是蛋白质 发挥生理功能的基础,因此一般将胰岛素划归为蛋白质。但有些书上也还不严格地称胰 岛素为多肽,因其分子量较小。但多肽和蛋白质都是氨基酸的多聚缩合物,而多肽也是 蛋白质不完全水解的产物。 蛋白质分子结构及其规律性
4 (polypeptide),它们都简称为肽。肽链中的氨基酸已不是游离的氨基酸分子,因为其氨 基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸 残基(amino acid residue)。 多肽有开链肽和环状肽。在人体内主要是开链肽。开链肽具有一个游离的氨基末端 和一个游离的羧基末端,分别保留有游离的α-氨基和α-羧基,故又称为多肽链的 N 端(氨基端)和 C 端(羧基端),书写时一般将 N 端写在分子的左边,并用(H)表示, 并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的 C 端写在分子的右边,并 用(OH)来表示。目前已有约 20 万种多肽和蛋白质分子中的肽段的氨基酸组成和排列 顺序被测定了出来,其中不少是与医学关系密切的多肽,分别具有重要的生理功能或药 理作用。 多肽在体内具有广泛的分布与重要的生理功能。其中谷胱甘肽在红细胞中含量丰富,具 有保护细胞膜结构及使细胞内酶蛋白处于还原、活性状态的功能。而在各种多肽中,谷 胱甘肽的结构比较特殊,分子中谷氨酸是以其γ-羧基与半胱氨酸的α-氨基脱水缩合 生成肽键的,且它在细胞中可进行可逆的氧化还原反应,因此有还原型与氧化型两种谷 胱甘肽。 近年来一些具有强大生物活性的多肽分子不断地被发现与鉴定,它们大多具有重要 的生理功能或药理作用,又如一些“脑肽”与机体的学习记忆、睡眠、食欲和行为都有 密切关系,这增加了人们对多肽重要性的认识,多肽也已成为生物化学中引人瞩目的研 究领域之一。 多肽和蛋白质的区别,一方面是多肽中氨基酸残基数较蛋白质少,一般少于 50 个, 而蛋白质大多由 100 个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线, 除分子量外,现在还认为多肽一般没有严密并相对稳定的空间结构,即其空间结构比较 易变具有可塑性,而蛋白质分子则具有相对严密、比较稳定的空间结构,这也是蛋白质 发挥生理功能的基础,因此一般将胰岛素划归为蛋白质。但有些书上也还不严格地称胰 岛素为多肽,因其分子量较小。但多肽和蛋白质都是氨基酸的多聚缩合物,而多肽也是 蛋白质不完全水解的产物。 二、蛋白质分子结构及其规律性
蛋白质是大分子化合物,一般由一条肽链、上百个氨基酸,即成千上万个原子组成 分为一、二、三、四4级、四个不同的层次(表2-5),以便进行深入研究,其中二、 四级均属于蛋白质的三维空间结构( three- dimensional structure,3D)或构象 ( conformation)。随着研究的深入,现在在蛋白质二级和三级结构之间,又增加了一些 超二级结构和结构域( domain) )蛋白质的一级结构( primary structure) 蛋白质的一级结构,专指多肽链中氨基酸(残基)的排列的序列( sequence)。若蛋 白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。一级结构就 是指蛋白质分子中由共价肽键相连的基本分子结构。不同的蛋白质,首先具有不同的 级结构,因此一级结构是区别不同蛋白质最基本、最重要的标志之 蛋白质一级结构的重要性,首先是由于其序列中不同氨基酸侧链R的大小、性质不 同,决定着肽链折叠盘曲形成不同的空间结构和功能。同时由于蛋白质的一级结构是由 遗传物质DNA分子上相应核苷酸序列、即遗传密码决定的,蛋白质与DNA分子均为线 状,因此具有“共线性”关系,不同生物具有不同的遗传特征,首先是由于其不同的DNA, 编码合成出不同的蛋白质,具有不同的一级结构所决定的,因此蛋白质一级结构的认识 对阐明其众多生理功能之分子本质甚为重要 蛋白质分子中氨基酸序列自动分析仪的问世,使蛋白质一级结构的测定有了飞速的 发展。同时由于DNA分子中核苷酸序列的测定也有了迅猛的发展,且其步骤较蛋白质 序列测定方法更快速简便,因此近年来更有通过蛋白质相应基因DNA序列的测定,来 推断该蛋白质的一级结构。自然界亿万种不同的蛋白质,首先是由于它们有亿万种不同 的一级结构,这是其不同空间结构与生理功能的分子基础 (二)蛋白质的二级结构( secondary structure) 蛋白质的二级结构是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主 链原子的局部空间排布。蛋白质分子的空间结构有一些共同的规律可遵循,其中二级结 构主要是周期性出现的有规则的α-螺旋、β-片层、β-转角、π-螺旋和无规则线圈等几 种二级结构单元,且这些有序的二级结构单元,主要是靠氢键等非共价键来维持其空间
5 蛋白质是大分子化合物,一般由一条肽链、上百个氨基酸,即成千上万个原子组成, 分为一、二、三、四 4 级、四个不同的层次(表 2-5),以便进行深入研究,其中二、 三、四级均属于蛋白质的三维空间结构(three-dimensional structure,3D)或构象 (conformation)。随着研究的深入,现在在蛋白质二级和三级结构之间,又增加了一些 超二级结构和结构域(domain)。 (一) 蛋白质的一级结构(primary structure) 蛋白质的一级结构,专指多肽链中氨基酸(残基)的排列的序列(sequence)。若蛋 白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。一级结构就 是指蛋白质分子中由共价肽键相连的基本分子结构。不同的蛋白质,首先具有不同的一 级结构,因此一级结构是区别不同蛋白质最基本、最重要的标志之一。 蛋白质一级结构的重要性,首先是由于其序列中不同氨基酸侧链 R 的大小、性质不 同,决定着肽链折叠盘曲形成不同的空间结构和功能。同时由于蛋白质的一级结构是由 遗传物质 DNA 分子上相应核苷酸序列、即遗传密码决定的,蛋白质与 DNA 分子均为线 状,因此具有“共线性”关系,不同生物具有不同的遗传特征,首先是由于其不同的 DNA, 编码合成出不同的蛋白质,具有不同的一级结构所决定的,因此蛋白质一级结构的认识 对阐明其众多生理功能之分子本质甚为重要。 蛋白质分子中氨基酸序列自动分析仪的问世,使蛋白质一级结构的测定有了飞速的 发展。同时由于 DNA 分子中核苷酸序列的测定也有了迅猛的发展,且其步骤较蛋白质 序列测定方法更快速简便,因此近年来更有通过蛋白质相应基因 DNA 序列的测定,来 推断该蛋白质的一级结构。自然界亿万种不同的蛋白质,首先是由于它们有亿万种不同 的一级结构,这是其不同空间结构与生理功能的分子基础。 (二) 蛋白质的二级结构(secondary structure) 蛋白质的二级结构是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主 链原子的局部空间排布。蛋白质分子的空间结构有一些共同的规律可遵循,其中二级结 构主要是周期性出现的有规则的α-螺旋、β-片层、β-转角、π-螺旋和无规则线圈等几 种二级结构单元,且这些有序的二级结构单元,主要是靠氢键等非共价键来维持其空间
结构的相对稳定的。 1.a-螺旋(α-helⅸx):是蛋白质分子中最稳定的二级结构,其基本特征是: (1)肽链骨架由肽键上的C、N原子与氨基酸残基中的α碳原子组成,交替形成 了肽链主链,它从N端到C端为顺时针方向的右手螺旋结构(图2-6、2-7) (2)螺旋每圈由3.6个氨基酸残基组成,每圈上下螺距为0.54nm(54A)。相邻 螺旋之间,由第1个氨基酸肽键上C=O,隔三个氨基酸残基,与第5个氨 基酸肽键上N一H形成氢键,其间包括13个原子(图2-8),故又称3613螺 旋,且氢键方向与α一螺旋长轴基本平行,每相邻螺旋间有三个氢键维持其 空间结构的相对稳定。 (3)α-螺旋类似实心棒状,氨基酸残基侧链R在螺旋外侧。各种蛋白质分子中 a-螺旋中氨基酸占总氨基酸组成的比例各不相同,如角蛋白中几乎全是由 α-螺旋组成,而小分子蛋白质尤其是在多肽中几乎无a-螺旋的存在。q 螺旋对维持蛋白质分子空间结构的相对稳定起着十分重要的作用。 2.β-片层结构(β- pleated sheet structure)又称β-折叠,是肽链中比较伸展的空间结 构,其中肽键平面接近平行、但略呈锯齿状或扇形。β-片层可由2~5个肽段片层之 间经C=O与N-H间形成的氢键来维系,但氢键方向与肽链长轴方向相垂直(图2 9),且反平行方式排列在热力学上最为稳定 大多数球状蛋白质分子中,q-螺旋与β-片层结构都同时存在,且是各种蛋白质 分子中的主要二级结构,但各占氨基酸组成的比例不同,如表2-6所示。胰岛素分 子中约有14%的氨基酸残基组成β-片层结构,而胰糜蛋白酶分子中约有45%氨基酸 残基组成β-片层二级结构,β-片层二级结构的可塑性比较大 转角(B-tumn,T),指肽链出现180°左右转向回折时的“U”形有规律的二级 结构单元,空间结构靠第1个氨基酸残基上的C=O隔两个氨基酸残基与第4个氨基 酸残基上的N-H形成的氢键来维持其稳定,氢键中包括10~12个原子,因此较 螺旋卷曲得更紧密。β-转角还有几种亚型,在球状蛋白质中含量丰富,且大多存在 于球状蛋白质分子的表面,因此为蛋白质生物活性的重要空间结构部位
6 结构的相对稳定的。 1. α-螺旋(α-helix):是蛋白质分子中最稳定的二级结构,其基本特征是: (1) 肽链骨架由肽键上的 C、N 原子与氨基酸残基中的α碳原子组成,交替形成 了肽链主链,它从 N 端到 C 端为顺时针方向的右手螺旋结构(图 2-6、2-7)。 (2) 螺旋每圈由 3.6 个氨基酸残基组成,每圈上下螺距为 0.54nm(5.4 A )。相邻 螺旋之间,由第 1 个氨基酸肽键上 C═O,隔三个氨基酸残基,与第 5 个氨 基酸肽键上 N—H 形成氢键,其间包括 13 个原子(图 2-8),故又称 3.613 螺 旋,且氢键方向与α-螺旋长轴基本平行,每相邻螺旋间有三个氢键维持其 空间结构的相对稳定。 (3) α-螺旋类似实心棒状,氨基酸残基侧链 R 在螺旋外侧。各种蛋白质分子中 α-螺旋中氨基酸占总氨基酸组成的比例各不相同,如角蛋白中几乎全是由 α-螺旋组成,而小分子蛋白质尤其是在多肽中几乎无α-螺旋的存在。α- 螺旋对维持蛋白质分子空间结构的相对稳定起着十分重要的作用。 2. β-片层结构(β-pleated sheet structure)又称β-折叠,是肽链中比较伸展的空间结 构,其中肽键平面接近平行、但略呈锯齿状或扇形。β-片层可由 2~5 个肽段片层之 间经 C═O 与 N—H 间形成的氢键来维系,但氢键方向与肽链长轴方向相垂直(图 2 -9),且反平行方式排列在热力学上最为稳定。 大多数球状蛋白质分子中,α-螺旋与β-片层结构都同时存在,且是各种蛋白质 分子中的主要二级结构,但各占氨基酸组成的比例不同,如表 2-6 所示。胰岛素分 子中约有 14%的氨基酸残基组成β-片层结构,而胰糜蛋白酶分子中约有 45%氨基酸 残基组成β-片层二级结构,β-片层二级结构的可塑性比较大。 3. β-转角(β-turn,T),指肽链出现 180º左右转向回折时的“U”形有规律的二级 结构单元,空间结构靠第 1 个氨基酸残基上的 C═O 隔两个氨基酸残基与第 4 个氨基 酸残基上的 N—H 形成的氢键来维持其稳定,氢键中包括 10~12 个原子,因此较α -螺旋卷曲得更紧密。β-转角还有几种亚型,在球状蛋白质中含量丰富,且大多存在 于球状蛋白质分子的表面,因此为蛋白质生物活性的重要空间结构部位
4!.π-螺旋(π-helⅸx):主要存在于胶原蛋白分子中,肽链以44个氨基酸残基盘旋一 圈,靠与螺旋长轴基本平行的氢键维持螺旋的稳定,氢键跨18个原子,故又称4418 螺旋。它是比α-螺旋稍大而疏松的左手螺旋。在胶原蛋白分子中,三股左手螺旋再 盘曲形成稳定的右手超螺旋,进一步缩合形成胶原微纤维。 5.随意卷曲( randon coil):又称无规律卷曲,是指各种蛋白质分子中彼此各不相同、 没有共同规律可遵循的那些肽段空间结构,它是蛋白质分子中一系列无序构象的总 称,也可以说是各种蛋白质分子中的特征性二级结构。因为在蛋白质分子中,并不 是所有肽段都形成有序的α-螺旋、β-片层、β-转角等二级结构的,而是有相当部 分的肽段,其二级结构在各蛋白质分子间彼此并不相似,无共同规律可遵循,它也 普遍存在于各种天然蛋白质分子中,同时也是蛋白质分子结构和功能的重要组成部 蛋白质二级结构、乃至更高层次空间结构的形成,决定于其一级结构。由于 级结构中氨基酸残基侧链R大小与性质的不同,使肽键可形成不同的α-螺旋、β 片层等二级结构。如一段肽段由相邻较多酸性氨基酸组成,由于侧链R解离带了相 同的负电荷,因此就同性相斥而不易形成稳定的α-螺旋;又如一个肽段中集中了较 多具有大侧链R的氨基酸,因空间位阻也不易形成有序的a-螺旋,而多形成随意卷 曲。而胶原蛋白分子中富含小分子的甘氨酸和脯氨酸、羟脯氨酸,空间位阻小,故 易形成三股超螺旋,且由于脯氨酸、羟脯氨酸为亚氨基酸,在形成肽键后其氮原子 上已无氢原子可形成氢键,因此π-螺旋不稳定,也就进一步形成了三股超螺旋。 6.超二级结构( super secondary structure)和结构域:近年来随着蛋白质结构与功能研 究的深入,发现不少蛋白质分子中的一些二级结构单元,往往有规则地聚集在一起 形成全由α-螺旋、全由β-片层或α-螺旋与β-片层混合、均有的超二级结构基本形 式,具体说,形成相对稳定的αa、βββ、βαβ、β2q和aTa等超二级结构 (图2-12)又称模体( motif或模序。具有调控作用的转录因子蛋白质中,就有β2 和aTa超二级结构存在。且单个或多个超二级结构,尚可进一步集结起来,形成 在蛋白质分子空间结构中明显可区分的区域,称结构域(图2-13),它们分别又是
7 4. π-螺旋(π-helix):主要存在于胶原蛋白分子中,肽链以 4.4 个氨基酸残基盘旋一 圈,靠与螺旋长轴基本平行的氢键维持螺旋的稳定,氢键跨 18 个原子,故又称 4.418 螺旋。它是比α-螺旋稍大而疏松的左手螺旋。在胶原蛋白分子中,三股左手螺旋再 盘曲形成稳定的右手超螺旋,进一步缩合形成胶原微纤维。 5. 随意卷曲(randon coil):又称无规律卷曲,是指各种蛋白质分子中彼此各不相同、 没有共同规律可遵循的那些肽段空间结构,它是蛋白质分子中一系列无序构象的总 称,也可以说是各种蛋白质分子中的特征性二级结构。因为在蛋白质分子中,并不 是所有肽段都形成有序的α-螺旋、β-片层、β-转角等二级结构的,而是有相当部 分的肽段,其二级结构在各蛋白质分子间彼此并不相似,无共同规律可遵循,它也 普遍存在于各种天然蛋白质分子中,同时也是蛋白质分子结构和功能的重要组成部 分。 蛋白质二级结构、乃至更高层次空间结构的形成,决定于其一级结构。由于一 级结构中氨基酸残基侧链 R 大小与性质的不同,使肽键可形成不同的α-螺旋、β- 片层等二级结构。如一段肽段由相邻较多酸性氨基酸组成,由于侧链 R 解离带了相 同的负电荷,因此就同性相斥而不易形成稳定的α-螺旋;又如一个肽段中集中了较 多具有大侧链 R 的氨基酸,因空间位阻也不易形成有序的α-螺旋,而多形成随意卷 曲。而胶原蛋白分子中富含小分子的甘氨酸和脯氨酸、羟脯氨酸,空间位阻小,故 易形成三股超螺旋,且由于脯氨酸、羟脯氨酸为亚氨基酸,在形成肽键后其氮原子 上已无氢原子可形成氢键,因此π-螺旋不稳定,也就进一步形成了三股超螺旋。 6. 超二级结构(super secondary structure)和结构域:近年来随着蛋白质结构与功能研 究的深入,发现不少蛋白质分子中的一些二级结构单元,往往有规则地聚集在一起 形成全由α-螺旋、全由β-片层或α-螺旋与β-片层混合、均有的超二级结构基本形 式,具体说,形成相对稳定的αα、βββ、βαβ、β2α和αTα等超二级结构 (图 2-12)又称模体(motif)或模序。具有调控作用的转录因子蛋白质中,就有β2 α和αTα超二级结构存在。且单个或多个超二级结构,尚可进一步集结起来,形成 在蛋白质分子空间结构中明显可区分的区域,称结构域(图 2-13),它们分别又是
蛋白质分子中的一个个功能单位,故不严格地又称之为功能域。蛋白质的结构域一 般由40~400个氨基酸残基组成。 蛋白质超二级结构和结构域的重要性,还在于它们往往分别是由该蛋白质相应 基因的DNA链上不同的外显子编码的。体内蛋白质生物合成时,甚至可将分布在不 同染色体上的外显子,通过重组合成出含有不同结构域组成的蛋白质。但因含有 些相同的结构域,因此就可生成一些具有相似功能的蛋白质,形成蛋白质家族 protein family),和合成特异性不同的各种免疫球蛋白分子等。又由于结构域仅是大分子蛋 白质中的一个部分,相对较小,比较容易研究其结构和功能的关系,因此结构域已 成为目前蛋白质结构、功能研究中的一个关注焦点与热门课题。 (三)蛋白质的三级结构( tertiary structure) 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基 主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经 肽链折叠在空间结构上可以非常接近 例如肌红蛋白是一条由153个氨基酸残基组成的肽链,分子中由八个肽段分别形成 A~H八段α一螺旋,再进一步通过AB、CD等一些β一转角与随意卷曲连接,进一步 地折叠形成接近球状的分子三级结构,分子大小为43nm×3.5nm×2.3nm(43A×35A ×23A)。临床上也通过测定病人血中的肌红蛋白来鉴别诊断心绞痛还是心肌梗死 自然界大多数蛋白质都是由一条肽链组成的,因此相对稳定的三级结构就是其特征 性的空间结构,这是蛋白质分子最显著的特征之一。不同蛋白质有不同的一级结构,因 此折叠形成不同的三级结构,赋予它们不同的生理功能。按一级结构人工合成胰岛素的 成功,并具有降低动物血糖浓度的作用,是一级结构决定蛋白质空间结构与生理功能的 最好例证。 肽链折叠卷曲形成的球状、椭圆形等三级结构蛋白质分子,往往形成一个亲水的分 子表面和一个疏水的分子内核,靠分子内部疏水键和氢键等来维持其空间结构的相对稳 定。有些蛋白质分子的亲水表面上也常有一些疏水微区,或在分子表面形成一些形态各
8 蛋白质分子中的一个个功能单位,故不严格地又称之为功能域。蛋白质的结构域一 般由 40~400 个氨基酸残基组成。 蛋白质超二级结构和结构域的重要性,还在于它们往往分别是由该蛋白质相应 基因的 DNA 链上不同的外显子编码的。体内蛋白质生物合成时,甚至可将分布在不 同染色体上的外显子,通过重组合成出含有不同结构域组成的蛋白质。但因含有一 些相同的结构域,因此就可生成一些具有相似功能的蛋白质,形成蛋白质家族(protein family),和合成特异性不同的各种免疫球蛋白分子等。又由于结构域仅是大分子蛋 白质中的一个部分,相对较小,比较容易研究其结构和功能的关系,因此结构域已 成为目前蛋白质结构、功能研究中的一个关注焦点与热门课题。 (三) 蛋白质的三级结构(tertiary structure) 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基 主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经 肽链折叠在空间结构上可以非常接近。 例如肌红蛋白是一条由 153 个氨基酸残基组成的肽链,分子中由八个肽段分别形成 A~H 八段α-螺旋,再进一步通过 AB、CD 等一些β-转角与随意卷曲连接,进一步 地折叠形成接近球状的分子三级结构,分子大小为 4.3nm×3.5nm×2.3nm(43 A ×35 A ×23 A )。临床上也通过测定病人血中的肌红蛋白来鉴别诊断心绞痛还是心肌梗死. 自然界大多数蛋白质都是由一条肽链组成的,因此相对稳定的三级结构就是其特征 性的空间结构,这是蛋白质分子最显著的特征之一。不同蛋白质有不同的一级结构,因 此折叠形成不同的三级结构,赋予它们不同的生理功能。按一级结构人工合成胰岛素的 成功,并具有降低动物血糖浓度的作用,是一级结构决定蛋白质空间结构与生理功能的 最好例证。 肽链折叠卷曲形成的球状、椭圆形等三级结构蛋白质分子,往往形成一个亲水的分 子表面和一个疏水的分子内核,靠分子内部疏水键和氢键等来维持其空间结构的相对稳 定。有些蛋白质分子的亲水表面上也常有一些疏水微区,或在分子表面形成一些形态各
异的“沟”、“槽”或“洞穴”等结构,一些蛋白质的辅基或金属离子往往就结合在其中。 例如上述肌红蛋白分子亲水表面上,就有一个疏水洞穴,其中结合着一个含Fe2的血红 素辅基,起着结合并储存氧的功能,供肌肉剧烈收缩氧供应相对不足时释放被利用的需 要。而结合了糖、脂的蛋白质分子其三级结构就更复杂了 (四)蛋白质的四级结构( quaternary structure) 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结 集所形成的蛋白质最高层次空间结构。在此蛋白质四级结构中,各具独立三级结构的多 肽链称亚基( subunit),亚基单独存在时不具生物活性,只有按特定组成与方式装配形成 四级结构时,蛋白质才具有生物活性。 例如血红蛋白就是由两条相同、各由141个氨基酸残基组成的a-亚基和两条相同、 各由146个氨基酸残基组成的β-亚基按特定方式接触、排布组成的一个球状、接近四面 体的分子结构。其中a和β亚基分别由七段和八段a-螺旋组成,且β-亚基的三级结构 与肌红蛋白三级结构十分相似(图2-16)每个亚基表面疏水洞穴中都分别结合一个含 Fe2血红素辅基。血红蛋白四个亚基间主要靠八个盐键和众多氢键维系其严密、特定的 四级结构(图2-17、2-18),其中一个a亚基肽链的N端与另一a-亚基的C端,在空 间结构中十分接近,靠盐键结合,且β-亚基的C端,又和α-亚基的第40位赖氨酸残基 以盐键相连,以维持血红蛋白严密且相对稳定的四级结构,完成其在血液中运输氧气的 生理功能。具有四级结构的整个蛋白质分子也大多形成一个亲水的分子表面和一个疏水 的分子内核。 蛋白质的四级结构,包括亚基数目、种类和空间排布方式各不相同。自然界蛋白质 的亚基组成数目多为偶数,可以由相同或不同的亚基组成,不同的亚基一般都用a、β、 γ等来命名,而具有不同催化功能和调节功能的酶蛋白亚基,则多用催化亚基C和调节 亚基R来命名(表2-7)。在蛋白质四级结构中,亚基多以对称的方式结合排布,并由 非共价键彼此相互连接。 并不是所有蛋白质分子都具有四级结构的。大多数蛋白质都只由一条肽链组成,只 具有三级结构就有生理活性了,只有一部分分子量更大、或具有调节功能的蛋白质,才
9 异的“沟”、“槽”或“洞穴”等结构,一些蛋白质的辅基或金属离子往往就结合在其中。 例如上述肌红蛋白分子亲水表面上,就有一个疏水洞穴,其中结合着一个含 Fe 2+的血红 素辅基,起着结合并储存氧的功能,供肌肉剧烈收缩氧供应相对不足时释放被利用的需 要。而结合了糖、脂的蛋白质分子其三级结构就更复杂了。 (四) 蛋白质的四级结构(quaternary structure) 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结 集所形成的蛋白质最高层次空间结构。在此蛋白质四级结构中,各具独立三级结构的多 肽链称亚基(subunit),亚基单独存在时不具生物活性,只有按特定组成与方式装配形成 四级结构时,蛋白质才具有生物活性。 例如血红蛋白就是由两条相同、各由 141 个氨基酸残基组成的α-亚基和两条相同、 各由 146 个氨基酸残基组成的β-亚基按特定方式接触、排布组成的一个球状、接近四面 体的分子结构。其中α和β亚基分别由七段和八段α-螺旋组成,且β-亚基的三级结构 与肌红蛋白三级结构十分相似(图 2-16)每个亚基表面疏水洞穴中都分别结合一个含 Fe2+血红素辅基。血红蛋白四个亚基间主要靠八个盐键和众多氢键维系其严密、特定的 四级结构(图 2-17、2-18),其中一个α亚基肽链的 N 端与另一α-亚基的 C 端,在空 间结构中十分接近,靠盐键结合,且β-亚基的 C 端,又和α-亚基的第 40 位赖氨酸残基 以盐键相连,以维持血红蛋白严密且相对稳定的四级结构,完成其在血液中运输氧气的 生理功能。具有四级结构的整个蛋白质分子也大多形成一个亲水的分子表面和一个疏水 的分子内核。 蛋白质的四级结构,包括亚基数目、种类和空间排布方式各不相同。自然界蛋白质 的亚基组成数目多为偶数,可以由相同或不同的亚基组成,不同的亚基一般都用α、β、 γ等来命名,而具有不同催化功能和调节功能的酶蛋白亚基,则多用催化亚基 C 和调节 亚基 R 来命名(表 2-7)。在蛋白质四级结构中,亚基多以对称的方式结合排布,并由 非共价键彼此相互连接。 并不是所有蛋白质分子都具有四级结构的。大多数蛋白质都只由一条肽链组成,只 具有三级结构就有生理活性了,只有一部分分子量更大、或具有调节功能的蛋白质,才
具有四级结构,它由几条肽链组成,从而赋予它特殊的别构作用,这对完成其特定生理 功能十分重要。另外由于肽链亚基间的连结键都是非共价键,因此由二硫键相连的,如 由四条肽链组成的免疫球蛋白、由A、B二条肽链组成的胰岛素分子,不属于具有四级 结构的蛋白质,何况胰岛素还是一个分子量很小的蛋白质 (五)维系蛋白质空间结构的非共价键 这些非共价键又称副键,包括氢键、盐键、疏水键和范德瓦士力( van der Waals) 等。其中维持蛋白质二级结构的主要是氢键,维持蛋白质三级结构的主要是疏水键,维 持蛋白质四级结构的有盐键。事实上各层次蛋白质分子空间结构的稳定,都有这些副键 共同参与,以保证蛋白质空间结构的相对稳定和各种生理功能的正常发挥。 非共价键的键能要比共价键的键能小得多,因此容易断裂,但由于蛋白质分子中非 共价键数目众多,因此它们在维持蛋白质严密空间结构和生理功能上起着十分重要的作 用 (六)二硫键( disulfide bond) 二硫键属于共价键,由一条或两条肽键上的两个半胱氨酸残基上的巯基经脱氢氧化 生成。二硫键的作用是加固由非共价键维系的蛋白质分子严密的空间结构,在进一步稳 定蛋白质构象和生理功能上起着重要的作用。 但并不是所有蛋白质分子中都含有二硫键的。含有二硫键的蛋白质,一旦其二硫键 被还原断裂,蛋白质的空间结构往往易遭到破坏,生理功能也就丧失。胰岛素被还原后 就丧失其降低血糖的生物活性。一般细胞合成后分泌到细胞外的蛋白质,分子中二硫键 较多,使此蛋白质分子构象更趋稳定以便顺利完成其生理功能,如胰岛素、血浆白蛋白 和免疫球蛋白等,而存在于细胞内的蛋白质分子,往往二硫键较少,因为在细胞内是富 含还原型谷胱甘肽的生理环境。 第四节蛋白质分子结构和功能的关系 、蛋白质分子一级结构和功能的关系 蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子 病( molecular disease)。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第6
10 具有四级结构,它由几条肽链组成,从而赋予它特殊的别构作用,这对完成其特定生理 功能十分重要。另外由于肽链亚基间的连结键都是非共价键,因此由二硫键相连的,如 由四条肽链组成的免疫球蛋白、由 A、B 二条肽链组成的胰岛素分子,不属于具有四级 结构的蛋白质,何况胰岛素还是一个分子量很小的蛋白质。 (五) 维系蛋白质空间结构的非共价键 这些非共价键又称副键,包括氢键、盐键、疏水键和范德瓦士力(van der Waals) 等。其中维持蛋白质二级结构的主要是氢键,维持蛋白质三级结构的主要是疏水键,维 持蛋白质四级结构的有盐键。事实上各层次蛋白质分子空间结构的稳定,都有这些副键 共同参与,以保证蛋白质空间结构的相对稳定和各种生理功能的正常发挥。 非共价键的键能要比共价键的键能小得多,因此容易断裂,但由于蛋白质分子中非 共价键数目众多,因此它们在维持蛋白质严密空间结构和生理功能上起着十分重要的作 用。 (六) 二硫键(disulfide bond) 二硫键属于共价键,由一条或两条肽键上的两个半胱氨酸残基上的巯基经脱氢氧化 生成。二硫键的作用是加固由非共价键维系的蛋白质分子严密的空间结构,在进一步稳 定蛋白质构象和生理功能上起着重要的作用。 但并不是所有蛋白质分子中都含有二硫键的。含有二硫键的蛋白质,一旦其二硫键 被还原断裂,蛋白质的空间结构往往易遭到破坏,生理功能也就丧失。胰岛素被还原后 就丧失其降低血糖的生物活性。一般细胞合成后分泌到细胞外的蛋白质,分子中二硫键 较多,使此蛋白质分子构象更趋稳定以便顺利完成其生理功能,如胰岛素、血浆白蛋白 和免疫球蛋白等,而存在于细胞内的蛋白质分子,往往二硫键较少,因为在细胞内是富 含还原型谷胱甘肽的生理环境。 第四节 蛋白质分子结构和功能的关系 一、 蛋白质分子一级结构和功能的关系 蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子 病(molecular disease)。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第 6