review
review
Chapter 15: Temperature and the Ideal gas law(了解) 1.平衡态( (thermal equilibrium) 2. The Zeroth Law of Thermodynamics If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other 3.系统平衡态的宏观状态参量 MT Equation of state, equilibrium states 4. Absolute Temperature(Kelvin scale) T=273.15+t
Chapter 15: Temperature and the Ideal Gas Law (了解) 1. 平衡态(thermal equilibrium) 2. The Zeroth Law of Thermodynamics If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other. p,V,T 3. 系统平衡态的宏观状态参量 Equation of state, equilibrium states 4. Absolute Temperature (Kelvin scale) T = 273.15 + t
5. Gas laws Charles,slaw∝T 0K100K200K300K400KS00K Gy- Lussac’ s law P∝T Bovle's law v PV=C
Charles’s law V T Gay-Lussac’s law P T P V 1 Boyle’s law PV = C 5. Gas Laws
ideal gas law M P RTEnRT n n is the number of moles of gas present, and r is universal gas constant. R=8.31J/mol.k)=0.082atm·L/(mol·K) Another form of ideal gas law is: pV= NT Nis total number of molecules in the sample k is called Boltzmann constant, which is defined as r 831J/mol K k 1.38×10-23J/K N.6.02×1023/mol
RT nRT M pV = = ideal gas law R = 8.31 J/(mol K) = 0.082atm L/(mol K) n is the number of moles of gas present, and R is universal gas constant. NA N n = Another form of ideal gas law is: pV = NkT N is total number of molecules in the sample. k is called Boltzmann constant, which is defined as . J/K . /mol . J/mol K 23 23 1 38 10 6 02 10 8 31 − = = = NA R k
Chapter 16 Kinetic Theory of gases (气体动理论) 816-1 Molecular Interpretation of Temperature (384388)重点 1. Velocities based on statistics ,=7=0 mean-square speeds vx=U _0, 3
Chapter 16 Kinetic Theory of Gases (气体动理论) 1. Velocities based on statistics: vx = vy = vz = 0 mean-square speeds 2 2 2 2 3 1 vx = vy = vz = v §16-1 Molecular Interpretation of Temperature (384-388) 重点
2. Pressure Formula of ideal gases. 分子平均平动动能 average kinetic energy K=-m0 p==nK P∝n分子数密度越大,压强越大 P∝k分子运动得越激烈,压强越大
2. Pressure Formula of Ideal Gases: 分子平均平动动能average kinetic energy 2 2 1 K = mv p nK 3 2 = P n 分子数密度越大,压强越大; P K 分子运动得越激烈,压强越大
3. average translational kinetic energy of molecules 理想气体压强公式p3 nK 理想气体状态方程P=nkT K=-mv==kT 温度的微观意义 (2)热力学温度是分子平均平动动能的量度。温度反映 了物体内部分子无规则运动的激烈程度。 The higher the temperature, according to kinetic theory, the faster molecules are moving on the average
3. average translational kinetic energy of molecules p = nkT 理想气体压强公式 理想气体状态方程 K m k T 2 3 2 1 2 = v = p nK 3 2 = 温度的微观意义 (2)热力学温度是分子平均平动动能的量度。温度反映 了物体内部分子无规则运动的激烈程度。 The higher the temperature, according to kinetic theory, the faster molecules are moving on the average
4 root-mean- square speed(方均根速率) 1-2U m02==kT v=3kT/m 3kT 3kT
4 root-mean-square speed (方均根速率) 3kT / m 2 m k T v = 2 3 2 1 2 v = k T m 2 3k T 3 vrms = v = =
816-2 Distribution of Molecular Speeds(388-390) 了解 77t 1麦氏分布函数f()=4丌(,) e2h7,2 2丌kT Marwell's probability distribution function 目6 f()= N Physical meaning: s日 在dU速率区间内 rms Speed v分子出现的概率
§16-2 Distribution of Molecular Speeds (388-390) 了解 Maxwell’s probability distribution function 3 2 2 2 2 ) e 2π (v) 4π( v v kT m kT m f − 1.麦氏分布函数 = v v Nd dN f ( ) = Physical Meaning: 在 dv 速率区间内 分子出现的概率
2. Three kinds of special Speeds p389 (1) The Average speed算术平均速率 8/T 7=vf(0)d V元m KT RT 7≈1.60 =1.60 VM
2. Three kinds of special Speeds p389 (1) The Average Speed 算术平均速率: m kT f π 8 ( )d 0 = = v v v v M RT m kT v 1.60 =1.60