免费下载网址http://jiaoxue5u.ys168.com 课题|1、认识一元二次方程(1)|授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标/1、理解一元三次方程的定义,会判断满足一元二次方程的条件。2、能根据具体情景应用 知识。3、体验与他人合作的重要性及数学活动中的探索和创造性 重点、难点1、一元二次方程的定义:建立一元二次方程的模型。2、一元二次方程的一般形式 教学步骤与流程 、复旧引新:1、什么是方程?什么样的方程是一元一次方程? 2、多项式2x2-3x+1是几次几项式?每项的系数和次数分别是几 、学习探究:理解一元二次方程的概念并会把一元二次方程化为一般形式 阅读教材31-32页,回答:(1)如果设花边的宽为xm,那么地毯中央长方形图案的长为 m根据题意,可得方程 (2)试再找出其他的五个连续整数,使前三个数的平方和等于后两个数的平方和: 如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为 ,根据题意可得方程: (3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙皿,如果设梯子底端滑动xm,那么滑动后 梯子底端距墙 皿,梯子顶端距地面的垂直距离为m,根据题意,可得方程: 三、合作交流:观察上述三个方程,它们的共同点为:① :象这样的方程 其中我们把 称为一元二次方程的一般形式,ax2,bx 分别称为 ,a、b分别称为 1、分别把上述三个方程化为ax2+bx+c=0的形式并说明每个方程的二次项系数、一次项系数和常数项: (1) (2) 四、归纳总结:1、通过本节课的学习你学到了哪些知识?与同学交流一下 2、通过本节课你认为学的比较好的内容是什么?不足又是什么 五、当堂训练:1、判断下列方程是否为一元二次方程,如果是说明二次项及二次项系数、一次项及一次 项系数和常数项: (1)2x2+3x+5 (2)(x+5)(x+2)=x2+3x+1 (3)(2x-1)(3x+5)=5 4)(3x+1)(x-2) 2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项 关于x的方程(k-3)x2+2x-1=0,当k 时,是一元二次方程 4、根据题意,列出方程:(1)有一面积为54平方米的长方形,将它的一边剪短5米,另一边剪短2米, 恰好变成一个正方形,这个正方形的边长是多少? (2)三个连续的整数两两相乘,再求和,结果为242,这三个数分别是多少? 4、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项: D程 一般形式 二次项系数一次项系数常数项 (x+2)(x-1) 4-7x2=0 4、关于x的方程(k2-1)x2+2(k-1)x+2k+2=0当k_时是一元二次方程;当k_时是一元一次方程 六、课后作业:习题2.1 课后 签章 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 课题 1、认识一元二次方程(1) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、理解一元二次方程的定义,会判断满足一元二次方程的条件。2、能根据具体情景应用 知识。3、体验与他人合作的重要性及数学活动中的探索和创造性。 重点、难点 1、一元二次方程的定义;建立一元二次方程的模型。 2、一元二次方程的一般形式。 教 学 步 骤 与 流 程 一、复旧引新:1、什么是方程?什么样的方程是一元一次方程? 2、多项式 2x2 -3x+1 是几次几项式?每项的系数和次数分别是几? 二、学习探究:理解一元二次方程的概念并会把一元二次方程化为一般形式。 阅读教材 31-32 页,回答:(1)如果设花边的宽为 xm,那么地毯中央长方形图案的长为 m,宽 为 m 根据题意,可得方程 (2)试再找出其他的五个连续整数,使前三个数的平方和等于后两个数的平方和: ; 如果设五个连续整数中的第一个数为 x,那么后面四个数依次可表示为 、 、 、 ,根据题意可得方程: (3)根据图 2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动 xm,那么滑动后 梯子底端距墙 m,梯子顶端距地面的垂直距离为 m,根据题意,可得方程: 三、合作交流:观察上述三个方程,它们的共同点为:① ;② ; 象这样的方程 叫做 。其中我们把 称为一元二次方程的一般形式,ax 2,bx, c 分别称为 、 、 ,a、b 分别称为 、 。 1、 分别把上述三个方程化为 ax 2 +bx+c=0 的形式并说明每个方程的二次项系数、一次项系数和常数项: (1) (2) (3) 四、归纳总结:1、通过本节课的学习你学到了哪些知识?与同学交流一下。 2、通过本节课你认为学的比较好的内容是什么?不足又是什么? 五、当堂训练:1、判断下列方程是否为一元二次方程,如果是说明二次项及二次项系数、一次项及一次 项系数和常数项: (1)2x2 +3x+5 (2)(x+5)(x+2)=x 2 +3x+1 (3)(2x-1)(3x+5)=-5 (4)(3x+1)(x-2)=-5x 2、把方程(3x+2)2 =4(x-3)2 化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。 3、关于 x 的方程(k-3)x 2 +2x-1=0,当 k 时,是一元二次方程。 4、根据题意,列出方程:(1)有一面积为 54 平方米的长方形,将它的一边剪短 5 米,另一边剪短 2 米, 恰好变成一个正方形,这个正方形的边长是多少? (2)三个连续的整数两两相乘,再求和,结果为 242,这三个数分别是多少? 4、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项: 方程 一般形式 二次项系数 一次项系数 常数项 3x2 =5x-1 (x+2)(x-1)=6 4-7x2 =0 4、关于 x 的方程(k 2 -1)x 2 +2(k-1)x+2k+2=0 当 k 时是一元二次方程;当 k 时是一元一次方程。 六、课后作业: 习题 2.1 课后 签章
免费下载网址http://jiaoxue5u.ys168.com 课题2、认识一元二次方程(2)授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标.经历方程解的探索过程,增进对方程解的认识。2能根据实际问题建立一元一次方程 的数学模型。3.渗透“夹逼”思想,发展估算意识和能力,培养克服困难的勇气 重点、难占1.探究一元二次方程的解或近似解,发展估算意识和能力。 2.用估算方法求一元二次方程的近似解。 教学步骤与流程 复习引新:1、什么是方程的解?2、一元二次方程的一般形式是怎样的?3、把下列方程化成 般形式,并写出它的二次项、一次项、常数项:(1)9x2-4x=5(2)(x-7)(4x+3)=(x-1) 学习探究:通过估算地毯花边的宽,理解探索方程解的过程。根据上节可的学习,如果设地毯花边的 宽xm,则可得方程(8-2xX5-2x)=18,化为一般形式为: 你能求出ⅹ吗?根据本题实际情况,思考下列问题 (1)x可能小于0吗?说说你的理由 (2)x可能大于4吗?可能大于2.5吗?为什么? 由以上两题可知ⅹ的取值范围是 (3)完成下表 5 2.5 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗? 三、合作交流:阅读课本33页“做一做”,设梯子底端滑动的距离ⅹ(m)则得(x+6)+72=102 化为一般形式为: (1)小明认为底端也滑动了1米,他的说法正确吗?简述你的观点: (2)滑动距离可能是2米,3米吗?为什么? (3)你能猜出滑动距离x(m)的大致范围吗? (4)x的整数部分是几?十分位是几? x2+12x-15 <x< 进一步计算 1.1 1.3 14 x2+12x-15 所以 因此x的整数部分是 十分位是 四、归纳总结:(计方程的近似解可用列表法求,估算的精度不要求很高。) 1、你学到了哪些知识?与同学交流一下。 2、通过本节课你认为学的比较好的内容是什么?不足又是什么? 五、当堂训练 1、五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个连续整数吗? 2、一个面积为120平方米的矩形苗圃,它的长比宽多2米,求苗圃的周长? 3、一名跳水运动员进行1Ⅷm跳台跳水训练,在正常情况下,运动员必须在距水面5m以前完成规定的动作, 并且调整好入水姿势,否则就容易出现失误。假设运动员起跳后的运动时间t(s)和运动员距水面的高度 h(m)满足关系:h=10+2.5t-5t,那么他最多有多长时间完成规定的动作? 六、课后作业:习题2.2 解压密码联系qq119139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 组长签章 年 月 日 课题 2、认识一元二次方程(2) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1.经历方程解的探索过程,增进对方程解的认识。 2.能根据实际问题建立一元二次方程 的数学模型。 3.渗透“夹逼”思想,发展估算意识和能力,培养克服困难的勇气。 重点、难点 1.探究一元二次方程的解或近似解,发展估算意识和能力。 2.用估算方法求一元二次方程的近似解。 教 学 步 骤 与 流 程 一、复习引新:1、什么是方程的解? 2、一元二次方程的一般形式是怎样的? 3、把下列方程化成一 般形式,并写出它的二次项、一次项、常数项:(1)9x2-4x=5 (2)(x-7)(4x+3)=(x-1)2 二、学习探究:通过估算地毯花边的宽,理解探索方程解的过程。根据上节可的学习,如果设地毯花边的 宽 x m,则可得方程 (8―2x)(5―2x)=18,化为一般形式为: __________________________ ___。 你能求出 x 吗?根据本题实际情况,思考下列问题: (1) x 可能小于 0 吗?说说你的理由;______________________________。 (2) x 可能大于 4 吗?可能大于 2.5 吗?为什么? 。 由以上两题可知 x 的取值范围是___________________。 (3)完成下表 x 0 0.5 1 1.5 2 2.5 2x2―13x+11 (4)你知道地毯花边的宽 x(m)是多少吗?还有其他求解方法吗? 三、合作交流:阅读课本 33 页“做一做”,设梯子底端滑动的距离 x(m)则得(x+6)2+72=102 化为一般形式为: ______________________________。 (1)小明认为底端也滑动了 1 米,他的说法正确吗?简述你的观点:__________________________ (2)滑动距离可能是 2 米,3 米吗?为什么?____________________________ (3) 你能猜出滑动距离 x(m)的大致范围吗? (4) x 的整数部分是几?十分位是几? x 0 0.5 1 1.5 2 x 2+12x-15 所以______ < x < ______。 进一步计算 x 1.1 1.2 1.3 1.4 x 2+12x-15 所以______ < x < ______因此 x 的整数部分是______,十分位是______ 四、归纳总结:(计方程的近似解可用列表法求,估算的精度不要求很高。) 1、你学到了哪些知识?与同学交流一下。 2、通过本节课你认为学的比较好的内容是什么?不足又是什么? 五、当堂训练: 1、五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个连续整数吗? 2、一个面积为 120 平方米的矩形苗圃,它的长比宽多 2 米,求苗圃的周长? 3、一名跳水运动员进行 10m 跳台跳水训练,在正常情况下,运动员必须在距水面 5m 以前完成规定的动作, 并且调整好入水姿势,否则就容易出现失误。假设运动员起跳后的运动时间 t(s)和运动员距水面的高度 h(m)满足关系:h=10+2.5t-5t2 ,那么他最多有多长时间完成规定的动作? 六、课后作业: 习题 2.2
免费下载网址http://jiaoxue5u.ys168.com 课后 签章 组长签章 月 课题3、用配方法解一元二次方程(1)授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标|1、用开平方法解形如(x+m)=m(m≥0)的方程。2、理解配方法,会用配方法解二次项系数 为1的一元二次方程。3、会用转化的数学思想解决有关问题。 重点、难点 理解并掌握配方法,能够灵活运用配方法解二次项系数为1的一元二次方程 2、如何利用等式的性质进行配方 教学步骤与流程 、回顾交流:1、若x2=4,则x= 2、若(x+1)2=4,则x 若x2+2x+1=4,则x 4、若x2+2x=3,则x= 学习探究:理解配方法解一元二次方程的过程变化依据 1、填上适当的数,使下列等式成立 x2+12x+=(x+6)2; x2-4x+ x2+8x+ 2、根据上述变形,你能解哪些一元二次方程? 三、合作交流: 你会解下列方程吗?与同学交流一下你是如何做的? (x+2)2=5,x2+12x+36=5 2、解方程x2+12x-15=0的困难在哪里?你能将方程x2+12x-15=0转化成上面方程的形式吗?与同学交 3、思考:根据上面解答过程,你认为解一元二次方程的关键是什么? 4、在这里,解一元二次方程的基本思路是将方程转化成 的形式,它的一边是另一边 当 时两边 便可以求出它的根。这种通过配成 进 步求得一元二次方程根的方法称为配方法 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下 五、例题解析 例1解方程x2+8x-9=0 分析:将常数项移到方程的右边可得方 这样你将如何进行配方解方程?试 写出完整解答过程 六、当堂训练: 解下列方程:(1)x2+12x+25=0(2)x2+4x=10(3)x2-6x=11 解压密码联系qq119139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 课后 签章 组长签章 年 月 日 课题 3、用配方法解一元二次方程(1) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、用开平方法解形如(x+m)2 =n(n≥0)的方程。 2、理解配方法,会用配方法解二次项系数 为 1 的一元二次方程。 3、会用转化的数学思想解决有关问题。 重点、难点 1、理解并掌握配方法,能够灵活运用配方法解二次项系数为 1 的一元二次方程。 2、如何利用等式的性质进行配方 教 学 步 骤 与 流 程 一、回顾交流:1、若 x 2 =4,则 x= . 2、若(x+1)2 =4,则 x= . 3、若 x 2 +2x+1=4,则 x= . 4、若 x 2 +2x=3,则 x= . 二、学习探究:理解配方法解一元二次方程的过程变化依据。 1、填上适当的数,使下列等式成立: x 2 +12x+ =(x+6)2 ; x 2 -4x+ =(x- ) 2 ; x 2 +8x+ =(x+ ) 2 . 2、根据上述变形,你能解哪些一元二次方程? 三、合作交流: 1、你会解下列方程吗?与同学交流一下你是如何做的? x 2 =5, (x+2)2 =5, x 2 +12x+36=5 2、解方程 x 2 +12x-15=0 的困难在哪里?你能将方程 x 2 +12x-15=0 转化成上面方程的形式吗?与同学交 流一下。 3、思考:根据上面解答过程,你认为解一元二次方程的关键是什么? 4、在这里,解一元二次方程的基本思路是将方程转化成 的形式,它的一边是 另一边 是 ,当 时两边 便可以求出它的根。这种通过配成 进一 步求得一元二次方程根的方法称为配方法 ... 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。 五、例题解析: 例 1 解方程 x 2 +8x-9=0 分析:将常数项移到方程的右边可得方程 。这样你将如何进行配方解方程?试 写出完整解答过程。 六、当堂训练: 解下列方程:(1)x2 +12x+25=0 (2)x2 +4x=10 (3)x2 -6x=11
免费下载网址http://jiaoxue5u.ys168.com (4)x2-2x-4=0(5)x2-4x-12=0 七、课后作业:习题2.3 课后 签章 组长签章 课题4、用配方法解一元二次方程(2)授课时间 课前审核: 主备课人 王文华 授课人 教学目标/1、能够熟练地、灵活的应用配方法解一元二次方程 2、进一步体会转化的数学思想 方法来解决实际问题。3、培养观察能力运用所学旧知识解决新问题 重点、难点能够熟练的应用配方法解一元二次方程 教学步骤与流程 知识回顾:上节课我们学过的解一元二次方程的基本思路是什么?其关键是什么? 、学习探究:熟练掌握解一元二次方程的两种方法 1、解下列方程:(1)(2-x)2=3(2)(x-√2)2=64(3)2(x+1)≈9 2、用配方法解方程:(1)x2-6x-40=0(2)x2-6x+7=0(3)x2+4x+3=0(4)x2-8x+9=0 、合作交流:1、当x取何值时,代数式10-6x+x2有最小值,是几? 2、配方法证明y2-12y+42的值恒大于0 四、归纳总结:通过本节课的学习你进一步熟练了哪些知识?与同学交流一下。 五、例题学习 例1解方程3x2+8x-3=0 分析:如何将二次项系数化为1?这样你可得方程 试将解方程的解答过程写出。 六、当堂训练: 1、(1)x2-4x+ 方程x2-12x=9964经配方后得(x 3、当x=1满足方程x2-2(a+1)2x-9=0时, 4、已知:方程(m+1)x2x+(m-3)x-1=0,试问: (1)m取何值时,方程是关于x的一元二次方程,求出此时方程的解 (2)m取何值时,方程是关于x的一元一次方程 5、关于x的一元二次方程(a+1)x2+3x+a2-3a-4=0的一个根为0,则a的值为() 解压密码联系qq11139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com (4)x2 -2x-4=0 (5)x 2 -4x-12=0 七、课后作业: 习题 2.3 课后 签章 组长签章 年 月 日 课题 4、用配方法解一元二次方程(2) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、能够熟练地、灵活的应用配方法解一元二次方程。 2、进一步体会转化的数学思想 方法来解决实际问题。 3、培养观察能力运用所学旧知识解决新问题。 重点、难点 能够熟练的应用配方法解一元二次方程。 教 学 步 骤 与 流 程 一、知识回顾:上节课我们学过的解一元二次方程的基本思路是什么?其关键是什么? 二、学习探究:熟练掌握解一元二次方程的两种方法。 1、解下列方程: (1)(2-x)2 =3 (2)(x- 2 )2 =64 (3)2(x+1)2 = 2 9 2、用配方法解方程:(1)x 2 -6x-40=0 (2)x 2 -6x+7=0 (3)x 2 +4x+3=0 (4)x 2 -8x+9=0 三、合作交流:1、当 x 取何值时,代数式 10-6x+x2 有最小值,是几? 2、配方法证明 y 2 -12y+42 的值恒大于 0。 四、归纳总结:通过本节课的学习你进一步熟练了哪些知识?与同学交流一下。 五、例题学习: 例 1 解方程 3x 2 +8x-3=0 分析:如何将二次项系数化为 1?这样你可得方程 。试将解方程的解答过程写出。 六、当堂训练: 1、(1)x 2 -4x+ =(x- )2;(2)x 2 - 3 4 x+ =(x- )2 2、方程 x 2 -12x=9964 经配方后得(x- )2 = 3、当 x=-1 满足方程 x 2 -2(a+1) 2 x-9=0 时,a= 4、已知:方程(m+1)x 2m+1+(m-3)x-1=0,试问: (1)m 取何值时,方程是关于 x 的一元二次方程,求出此时方程的解; (2)m 取何值时,方程是关于 x 的一元一次方程 5、关于 x 的一元二次方程(a+1)x 2 +3x+a2 -3a-4=0 的一个根为 0,则 a 的值为( )
免费下载网址http://jiaoxue5u.ys168.com C、-1或4 6、不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A、总不小于2B、总不小于7C、可为任何实数D、可能为负数 七、课后作业:习题2.4 课后 签章 组长签章 课题 用配方法解一元二次方程(3)授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标|1,用一元二次方程解决现实情景中的间题:2,能根据具体问题的实际意义检验结果的合 重点、难点审明题意,寻找等量关系,将实际问题转化成一元二次方程的数学模型。 教学步骤与流程 、回顾引新:上两节课我们学过的解一元二次方程的基本方法是什么? 、学习探究:用一元二次方程解决现实情景中的问题。学习教材P.38-39 内容尝试回答下列问题 1、你认为小明的结果对吗?为什么? 2、你能帮小亮求出图中x的吗? 3、你还有其他设计方案吗? 三、合作交流:1、与同伴交流自学探究中问题的答案,看一下你们做的情况。 2、你认为运用方程解决实际问题的关键是什么?与同伴交流一下。 四、归纳总结:通过本节课的学习你又学到了哪些知识?与同学交流一下。 下:::::::: 五、当堂训练 1、对于本课中花园的设计问题,小颍的设计方案如图所示,你能帮她求出 图中x的吗? (第1题) 2、在一幅长90cm、宽40cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求 风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少? 3、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m。 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com A、-1 B、4 C、-1 或 4 D、1 6、不论 x、y 为什么实数,代数式 x 2 +y2 +2x-4y+7 的值( ) A、总不小于 2 B 、总不小于 7 C、 可为任何实数 D、可能为负数 七、课后作业:习题 2.4 课后 签章 组长签章 年 月 日 课题 5、用配方法解一元二次方程(3) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、用一元二次方程解决现实情景中的问题;2、能根据具体问题的实际意义检验结果的合 理性。3、能力培养:形成解决现实问题的一些基本方法和策略,培养创新意识。 重点、难点 审明题意,寻找等量关系,将实际问题转化成一元二次方程的数学模型。 教 学 步 骤 与 流 程 一、回顾引新:上两节课我们学过的解一元二次方程的基本方法是什么? 二、学习探究:用一元二次方程解决现实情景中的问题。学习教材 P.38—39 内容尝试回答下列问题: 1、你认为小明的结果对吗?为什么? 2、你能帮小亮求出图中 x 的吗? 3、你还有其他设计方案吗? 三、合作交流:1、与同伴交流自学探究中问题的答案,看一下你们做的情况。 2、你认为运用方程解决实际问题的关键是什么?与同伴交流一下。 四、归纳总结:通过本节课的学习你又学到了哪些知识?与同学交流一下。 五、当堂训练: 1、对于本课中花园的设计问题,小颍的设计方案如图所示,你能帮她求出 图中 x 的吗? 2、在一幅长 90cm、宽 40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求 风景画的面积是整个挂图面积的 72%,那么金色纸边的宽应该是多少? 3、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长 25m),另三边用木栏围成,木栏长 40m。 xm xm 12m 16m (第 1 题)
免费下载网址http://jiaoxue5u.ys168.com (1)鸡场的面积能达到180m2吗?能达到200m2吗? (2)鸡场的面积能达到250m2吗? 如果能,请你给出设计方案;如果不能,请说明理由 六、课后作业:习题2.5 课后 签章 组长签章 课题6、用公式法解一元二次方程授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标|1、理解一元三次方程求根公式的推导过程 2、会用求根公式解简单数字系数的一元二次方程。 重点,雅点/、用求根公式解简单数字系数的一元二次方程 、难点|2、对求根公式的推导过程的理解 教学步骤与流程 回顾引新:1.利用配方法快速解下列两个方程 (1)x2+2x-35=0 (2)5x2-15x-10=0 2.通过对配方法解一元二次方程的学习,你认为利用配方法解方程的关键是什么?步骤呢? 学习探究:利用配方法推导一元二次方程的求根公式,若给出一个一元二次方程ax2+bx+c=0(a≠0) 你觉得应如何利用配方法求解? (1)ax2+bx+c=0(a≠0)方程的两边同时除以a可得到: (2)把上式中的常数项移项可得: (3)如果对上式进行配方,方程两边应加上什么式子,这个式子是怎样得到的? (4)配方后可得 (5)思考:对于上式能不能直接利用直接开平方,为什么? 结论:对于一元二次方程ax2+bx+c=0(a≠0),当 时,它的根是: 称为求根公式,用 解一元二次方程的方法称为公式法 、合作交流: 1、上面我们利用了 推导出了解一元二次方程的另外一种方法: 2、你认为利用求根公式解一元二次方程的关键是什么?与同学交流一下的想法。 利用公式法解方程的一般步骤:(1) (2) (3) 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。 五、例题解析: 例1利用公式法解方程x2-7x-18=0 分析:此方程中哪些数字相当于ax2+bx+c=0(a≠0)中的a、b、c?试写出解方程的完整过程。 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com (1) 鸡场的面积能达到 180m2 吗?能达到 200 m2 吗? (2) 鸡场的面积能达到 250 m2 吗? 如果能,请你给出设计方案;如果不能,请说明理由。 六、课后作业:习题 2.5 课后 签章 组长签章 年 月 日 课题 6、用公式法解一元二次方程 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、理解一元二次方程求根公式的推导过程; 2、会用求根公式解简单数字系数的一元二次方程。 重点、难点 1、用求根公式解简单数字系数的一元二次方程 2、对求根公式的推导过程的理解 教 学 步 骤 与 流 程 一、回顾引新:1.利用配方法快速解下列两个方程: (1)x 2 +2x-35=0 (2)5x2 -15x-10=0 2.通过对配方法解一元二次方程的学习,你认为利用配方法解方程的关键是什么?步骤呢? 。 二、学习探究:利用配方法推导一元二次方程的求根公式,若给出一个一元二次方程 ax 2 +bx+c=0(a≠0) 你觉得应如何利用配方法求解? (1) ax 2 +bx+c=0(a≠0)方程的两边同时除以 a 可得到: 。 (2) 把上式中的常数项移项可得: (3) 如果对上式进行配方,方程两边应加上什么式子,这个式子是怎样得到的? 。 (4) 配方后可得: 。 (5) 思考:对于上式能不能直接利用直接开平方,为什么? 结论:对于一元二次方程 ax 2 +bx+c=0(a≠0),当 时,它的根是: x= 。式子 称为求根公式,用 解一元二次方程的方法称为公式法 ...。 三、合作交流: 1、上面我们利用了 推导出了解一元二次方程的另外一种方法: 。 2、你认为利用求根公式解一元二次方程的关键是什么?与同学交流一下的想法。 3、利用公式法解方程的一般步骤:(1) (2) (3) (4) 。 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。 五、例题解析: 例 1 利用公式法解方程 x 2 -7x-18=0 分析:此方程中哪些数字相当于 ax 2 +bx+c=0(a≠0)中的 a、b、c?试写出解方程的完整过程
免费下载网址http://jiaoxue5u.ys168.com 六、当堂训练: 1、用公式法解下列方程: (1)x2+2x-35=0(2)5x2-15x-10=0 (3)9x2+6x+1=0 (4)16x2+8x=3 2、一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。 七、课后作业:习题2.6 课后 签章 组长签章 月 课题7、用因式分解法解一元二次方程授课时间 课前审核: 主备课人 王文华 授课人 年月日 教学目标|1、了解分解因式法的概念 2、会用因式分解法解某些简单的数字系数的一元二次方程 重点、难点会用因式分解法解某些简单的数字系数的一元二次方程。 教学步骤与流程 回顾引新: 1、有两个数a、b,如果它们之间满足a·b=0,则a,b的值会是怎样的情况? 2、对下列各式分解因式: (1)5x2-4 (2)x-2-x2+2 二、学习探究:会用分解因式法解某些简单的数字系数的一元二次方程 学习教材P.60-61的内容,解答下列问题: 1、一个数的平方与这个数的3倍有可能相等吗? 观察小颖、小明、小亮的做法,正确的有 思考错误的原因 小颖的依据是 小亮是如何做的?(说明) 由小亮的做法可以得到:如果 那么 3、当一元二次方程的一边为0,而另一边容易 时,我们就可以采用 的方法求解。这种解一元二次方程的方法称为 三、合作交流: 1、利用分解因式法解一元二次方程的步骤是什么? 2、你能用分解因式法解方程x2-4=0,(x+1)2-25=0吗?与同学交流一下。 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。 五、例题解析: 例1、利用分解因式法解方程(1)5x2=4x (2)x-2=x(x-2) 六、当堂训练: 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 六、当堂训练: 1、用公式法解下列方程: (1)x 2 +2x-35=0 (2)5x2 -15x-10=0 (3)9x2 +6x+1=0 (4)16x2 +8x=3 2、一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。 七、课后作业: 习题 2.6 课后 签章 组长签章 年 月 日 课题 7、用因式分解法解一元二次方程 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、了解分解因式法的概念。 2、会用因式分解法解某些简单的数字系数的一元二次方程。 重点、难点 会用因式分解法解某些简单的数字系数的一元二次方程。 教 学 步 骤 与 流 程 一、回顾引新: 1、有两个数 a、b,如果它们之间满足 a•b=0,则 a,b 的值会是怎样的情况? 2、对下列各式分解因式: (1)5x2 -4x (2)x-2-x 2 +2x 二、学习探究:会用分解因式法解某些简单的数字系数的一元二次方程。 学习教材 P.60—61 的内容,解答下列问题: 1、 一个数的平方与这个数的 3 倍有可能相等吗? 2、观察小颖、小明、小亮的做法,正确的有 ,思考错误的原因; 小颖的依据是 ,小亮是如何做的?(说明) 由小亮的做法可以得到:如果 ,那么 3、当一元二次方程的一边为 0,而另一边容易 时,我们就可以采用 的方法求解。这种解一元二次方程的方法称为 。 三、合作交流: 1、利用分解因式法解一元二次方程的步骤是什么? 2、你能用分解因式法解方程 x 2 -4=0, (x+1)2 -25=0 吗?与同学交流一下。 四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。 五、例题解析: 例 1、利用分解因式法解方程(1)5x2 =4x (2)x-2=x(x-2) 六、当堂训练:
免费下载网址http://jiaoxue5u.ys168.com 1、用分解因式法解方程并思考做题依据: (1)x2-6x=0 (2)3(x-5)2=2(5-x) (3)2(x-3)2=x2-9 (4)4x2-4x+1=0 (5)4(x-2)2=9(x+3)2 2、解方程2x(x-1)=x-1时,有的同学在方程的两边同时除以(x-1),得2x=1,解方程得x=0.5,这种做 法对吗?如果不对,请你写出正确的答案并与同学交流. 七、课后作 习题2.7 签章 组长签章 课题8、一元二次方程根与系数的关系授课时间 课前审核: 主备课人 王文华 授课人 年月日 1.理解掌握一元二次方程ax2+bx+c=0(a≠0)的两根x,x2与系数a、b、c之间的关系 教学目标|2根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知 会求已知方程的两根的倒数和与平方和、两根的差 重点、难点在推导过程中,培养学生“观察一一发现一—猜想—一证明”的研究问题的思想与方法。 教学步骤与流程 复习回顾 1、一元二次方程的一般形式? ax2+bx+c=0(a≠0)(板书) 2、一元二次方程有实数根的条件是什么?(△=b2-4ac≥0) 3、当△>0,△=0,△<0根的情况如何? (x==b±√b2-4ac 4、一元二次方程的求根公式是什么? 二、情景引入 内容:同学们,我们来做一个游戏,看谁能更快速的说出下列一元二次方程的两根和与两根积? (1)x2+3x+4=0 (3)2x2-3x+1=0 目的:通过游戏入手,激发学生学习兴趣。 效果:激发了学生的求知欲和好奇心,激起了学生探究新知的兴趣。自然引出本节课要学习的课题 三、探究新知 内容:计算填表(验证第一环节游戏的结果) 方程 x2+3x+4=0 6x2+x-2=0 2x2-3x+1=0 问题:1、你找到快速求出一元二次方程的两根和与两根积的方法了吗?2、刚才我们列举了部分方 程发现两根和、两根积与系数的关系,那么是不是所有的一元二次方程根与系数都有这样的关系呢? 3、请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系: 4.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。 四、尝试发展 尝试题1:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数) (1)2x2-3x-1=0 XIX- (2)3x2+5x=0x1+x 解压密码联系qq119139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 1、用分解因式法解方程并思考做题依据: (1)x 2 -6x=0 (2)3(x-5) 2 =2(5-x) (3)2(x-3) 2 =x 2 -9 (4)4x2 -4x+1=0 (5)4(x-2)2 =9(x+3)2 2、解方程 2x(x-1)=x-1 时,有的同学在方程的两边同时除以(x-1),得 2x=1,解方程得 x=0.5,这种做 法对吗?如果不对,请你写出正确的答案并与同学交流. 七、课后作业: 习题 2.7 课后 签章 组长签章 年 月 日 课题 8、一元二次方程根与系数的关系 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1.理解掌握一元二次方程 ax 2 +bx+c=0 (a≠0)的两根 x1,x2 与系数 a、b、c 之间的关系。 2.根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知 数。 3.会求已知方程的两根的倒数和与平方和、两根的差。 重点、难点 在推导过程中,培养学生“观察——发现——猜想——证明”的研究问题的思想与方法。 教 学 步 骤 与 流 程 一、复习回顾 1、一元二次方程的一般形式? ax 2 +bx+c=0 (a≠0)(板书) 2、一元二次方程有实数根的条件是什么? (△=b 2 -4ac≥0) 3、当△>0,△=0,△<0 根的情况如何? 4、一元二次方程的求根公式是什么? 二、情景引入 内容:同学们,我们来做一个游戏,看谁能更快速的说出下列一元二次方程的两根和与两根积? (1)x 2 +3x+4=0 (2)6x2 +x-2=0 (3) 2x2 -3x +1=0 目的:通过游戏入手,激发学生学习兴趣。 效果:激发了学生的求知欲和好奇心,激起了学生探究新知的兴趣。自然引出本节课要学习的课题 三、探究新知 内容: 计算填表(验证第一环节游戏的结果) 方程 x1 x2 x1+x2 x1x2 x 2 +3x+4=0 6x2 +x-2=0 2x2 -3x +1=0 问题:1、你找到快速求出一元二次方程的两根和与两根积的方法了吗? 2、刚才我们列举了部分方 程发现两根和、两根积与系数的关系,那么是不是所有的一元二次方程根与系数都有这样的关系呢? 3、请根据以上的观察发现进一步猜想:方程 ax 2 +bx+c=0 (a≠0)的根 x1,x2与 a、b、c 之间的关系:__________。 4.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。 四、尝试发展 尝试题 1:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为 x1,x2、k 是常数) (1)2x2 -3x-1=0 x1+x2= ________ x1x2= ________ (2)3x2 +5x=0 x1+x2= ________ x1x2=
免费下载网址http://jiaoxue5u.ys168.com (3)x2+7x=-6 XITX2- (4)5x2+kx-6=0x1+x 尝试题2:利用根与系数的关系,求一元二次方程2x2-3x+5=0的两个根的 (1)平方和(2)倒数和 尝试题3:已知方程6x2+kx-5=0的一个根为1,求它的另一个根及k的值 五、拓展创新 1.已知三角形的两边长a、b是方程x2-12x+k=0的两个根,三角形的第三条边c=4,求这个三角形的周长 2、变式训练:已知三角形的两边长a、b是方程x2-12x+k=0的两个根,三角形的第三条边c能等于15吗? 六、课堂小结 在方程ax2+bx+c=0(a≠0)中,a、b、c有哪些作用?①二次项系数a是否为零,决定着方程是否为二次 方程:②当a≠0时,b=0,a、c异号,方程两根互为相反数:③当a≠0时,△=b2-4ac可判定根的情况 ④当a≠0,b2-4ac≥0时,x1+x2 ⑤当a≠0,c=0时,方程必有一根为0 七、课后作业 课后 签章 组长签章 课题9、应用一元二次方程(1)授课时间 课前审核: 主备课人 王文华 授课人 年月日 1.分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型 教学目标|2能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理 性,进一步培养学生分析问题、解决问题的意识和能力 重点、难占通过分析问题中的数量关系,建立方程解决间题,认识方程模型的重要性,并总结运用方 程解决实际问题的一般过程。 教学步 与流程 、回忆巩固,情境导入 提出问题:还记得本章开始时梯子下滑的问题吗?①在这个问题中,梯子顶端下滑1米时,梯子底端滑动 的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?②如果梯子长度是13米, 梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少? 分组讨论: ①怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理来列方程? 涉及到解的取舍问题,应引导学生根据实际问题进行检验,决定解到底是多少 、做一做,探索新知 见课本P53页例1:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东 方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘 军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物 品送达军舰。 已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇, 那么相遇时补给船航行了多少海里?(结果精确到0.1海里) 在学生分析题意遇到困难时,教学中可设置问题串分解难点: (1)要求DE的长,需要如何设未知数? (2)怎样建立含DE未知数的等量关系?从已知条件中能找到吗? (3)利用勾股定理建立等量关系,如何构造直角三角形? B (4)选定R△DEF后,三条边长都是已知的吗?DE,DF,EF分别是多少? 解压密码联系qq119139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com ________ (3)x 2 +7x=-6 x1+x2= _________ x1x2= ________ (4)5x2 +kx-6=0 x1+x2= ________ x1x2= ________ 尝试题 2:利用根与系数的关系,求一元二次方程 2x2 -3x+5=0 的两个根的 (1)平方和 (2)倒数和 (3)差 尝试题 3:已知方程 6x2 +kx-5=0 的一个根为 1,求它的另一个根及 k 的值。 五、拓展创新 1.已知三角形的两边长 a、b 是方程 x 2 -12x+k==0 的两个根,三角形的第三条边 c=4,求这个三角形的周长。 2、变式训练:已知三角形的两边长 a、b 是方程 x 2 -12x+k==0 的两个根,三角形的第三条边 c 能等于 15 吗? 六、课堂小结 在方程 ax 2 +bx+c=0(a≠0)中,a、b、c 有哪些作用?①二次项系数 a 是否为零,决定着方程是否为二次 方程;②当 a≠0 时,b=0,a、c 异号,方程两根互为相反数;③当 a≠0 时,△=b 2 -4ac 可判定根的情况 ④当 a≠0,b 2 -4ac≥0 时,x1+x2= ,x1x2= ⑤当 a≠0,c=0 时,方程必有一根为 0。 七、课后作业 课后 签章 组长签章 年 月 日 课题 9、应用一元二次方程(1) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1.分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型; 2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理 性,进一步培养学生分析问题、解决问题的意识和能力; 重点、难点 通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方 程解决实际问题的一般过程。 教 学 步 骤 与 流 程 一、回忆巩固,情境导入 提出问题:还记得本章开始时梯子下滑的问题吗?①在这个问题中,梯子顶端下滑1米时,梯子底端滑动 的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢? ②如果梯子长度是13米, 梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少? 分组讨论: ①怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理来列方程? ②涉及到解的取舍问题,应引导学生根据实际问题进行检验,决定解到底是多少。 二、做一做,探索新知 见课本 P53 页例 1:如图:某海军基地位于 A 处,在其正南方向 200 海里处有一重要目标 B,在 B 的正东 方向 200 海里处有一重要目标 C,小岛 D 位于 AC 的中点,岛上有一补给码头。小岛 F 位于 BC 中点。一艘 军舰从 A 出发,经 B 到 C 匀速巡航,一艘补给船同时从 D 出发,沿南偏西方向匀速直线航行,欲将一批物 品送达军舰。 已知军舰的速度是补给船的 2 倍,军舰在由 B 到 C 的途中与补给船相遇, 那么相遇时补给船航行了多少海里?(结果精确到 0.1 海里) 在学生分析题意遇到困难时,教学中可设置问题串分解难点: (1)要求 DE 的长,需要如何设未知数? (2)怎样建立含 DE 未知数的等量关系?从已知条件中能找到吗? (3)利用勾股定理建立等量关系,如何构造直角三角形? (4)选定 RtDEF 后,三条边长都是已知的吗?DE,DF,EF 分别是多少?
免费下载网址http:/jiaoxue5u.ys168.com 学生在问题串的引导下,逐层分析,在分组讨论后找出题目中的等量关系即 速度等量:V军舰=2×V 间等量:tw=t补给三边数量关系:EF2+FD2=DE2 练一练,巩固新知 1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的 面积为4800cm2。求原正方形钢板的面积。 2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于 96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱? 四、课堂小结 1、列方程解应用题的关键。 2、列方程解应用题的步骤。 列方程应注意的一些问题 第五环节:布置作业 1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积等于45,你知道这两个小朋友几岁吗? 2、一块长方形草地的长和宽分别为20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为 246m2,求小路的宽度。 3、习题2.9 课后 签章 组长签章 课题10、应用一元二次方程(2)授课时间 课前审核: 主备课人 王文华 授课人 年月日 1、建立方程模型来解决生活中的实际问题: 教学目标|2、总结运用方程解决实际问题的一般步骤 3、提高逻辑思维能力和分析问题、解决问题的能力 重点、难点用一元二次方程的数学模型刻画现实问题。 教学步骤与流程 回顾引新:1、思考:列一元二次方程解应用题的步骤是什么? 、学习探究:建立方程模型来解决生活中的实际问题。 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查表明:这种台灯的售价每 上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多 少?这时应进台灯多少个? 三、合作交流 1、列一元二次方程解应用题:(1)步骤:a、审 b、设 列 、检验 f、作答 (2)关键: 2、列一元二次方程解应用题应注意的几个问题 (1)列一元二次方程,只设个未知量。 (2)审题过程在草纸上进行,解答过程只需有 过程不需太详细,不符题意时,及时舍去 (4)列方程时, 要统一。 中必须写清单位。 四、归纳总结:通过本节课的学习你熟练了哪些知识?哪些知识还有疑问?与同学交流一下。 解压密码联系qq119139686加微信公众号 JIaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 学生在问题串的引导下,逐层分析,在分组讨论后找出题目中的等量关系即: 速度等量:V 军舰=2×V 补给船 时间等量:t 军舰=t 补给船 三边数量关系: 2 2 2 EF + FD = DE 三、练一练,巩固新知 1、在一块正方形的钢板上裁下宽为 20cm 的一个长条,剩下的长方形钢板的 面积为 4800 cm2。求原正方形钢板的面积。 2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于 20,积等于 96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱? 四、课堂小结 1、列方程解应用题的关键。 2、列方程解应用题的步骤。 3、列方程应注意的一些问题 第五环节:布置作业 1、甲乙两个小朋友的年龄相差 4 岁,两个人的年龄相乘积等于 45,你知道这两个小朋友几岁吗? 2、一块长方形草地的长和宽分别为 20m 和 15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为 246 ㎡,求小路的宽度。 3、习题 2.9 课后 签章 组长签章 年 月 日 课题 10、应用一元二次方程(2) 授课时间 课前审核: 主备课人 王 文 华 授 课 人 年 月 日 教学目标 1、建立方程模型来解决生活中的实际问题; 2、总结运用方程解决实际问题的一般步骤。 3、提高逻辑思维能力和分析问题、解决问题的能力。 重点、难点 用一元二次方程的数学模型刻画现实问题。 教 学 步 骤 与 流 程 一、回顾引新:1、思考:列一元二次方程解应用题的步骤是什么? 二、学习探究:建立方程模型来解决生活中的实际问题。 某商场将进货价为 30 元的台灯以 40 元售出,平均每月能售出 600 个。调查表明:这种台灯的售价每 上涨 1 元,其销售量就将减少 10 个。为了实现平均每月 10000 元的销售利润,这种台灯的售价应定为多 少?这时应进台灯多少个? 三、合作交流: 1、列一元二次方程解应用题:(1)步骤:a、审__________;b、设__________;c、列_________; d、解_________;e、检验_____________;f、作答。 (2)关键:_____________。 2、列一元二次方程解应用题应注意的几个问题 (1)列一元二次方程,只设_____个未知量。 (2)审题过程在草纸上进行,解答过程只需有___、_____、_____、_____、____。 (3)_______过程不需太详细,不符题意时,及时舍去。 (4)列方程时,_________要统一。 (5)______、_____中必须写清单位。 四、归纳总结:通过本节课的学习你熟练了哪些知识?哪些知识还有疑问?与同学交流一下