第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:395KB 文档页数:4
设D是以点A,1),B(-1),C(-1,-1)的三角形,则 √x2+3y2+1)si(xy)+2dy=(A)(中) (A)4.(B)2.(C)1.(D)0 2.设球体x2+y2+z2≤2az(a>0)中每点的质量密度与该点 到坐标原点的距离的平方成反比,则该球体的质量M与质心x坐标X为 (中) (A)M=2ka, X X=-a (C)M=2kma, x=la. (D) M=kma, x=Ia 3.设D={(x,y)∈R2x2+y221>0,f(x,y)在D上连续,在D内可微, f(0,0)=1,D的正向边界为C1。若f(x,y)在D上满足方程 afaf 1 ∫(x,y)