第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:412.5KB 文档页数:13
第五章向量分析 习题讨论:曲线、曲面积分的计算 习题讨论题 1.计算积分:x2d,C:x+y2+z2=1 x+y+z=0' 2,计算积分:1-cos dx+sin+cos ydx, x xx) 沿任一条不与轴相交的曲线。 3,计算1=2mx2+y2,其中X=ax+by 1XdY-Ydx , ad-bc≠0,C为包围原点的闭曲线 4,计算s,j=ad 其中S:x2+y2+z2=a2,外法线为曲面正向。 5,设函数满足条件: