点击切换搜索课件文库搜索结果(973)
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:DOC 文档大小:586KB 文档页数:9
第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文档格式:DOC 文档大小:503.5KB 文档页数:8
第六章不定积分 CThe indefinite integration 6-1原函数和不定积分 6-1-1原函数概念及性质 6-1-2不定积分概念及性质 5-1-3基本积分表及凑微分法 6-2不定积分方法 6-21变量置换法 6-2-2分部积分法 63有理函数的积分 6-3-1最简分式的积分 6-3-2有理函数的积分 6-4其他可积成有限形式的函数类 6-4-1三角有理式的积分 第十四讲原函数及不定积分 课后作业: 阅读:第六章61:pp206-210;6.2:p2ll-214 预习:第六章62:pp214-216;63:pp218-22:6.4:pp224-230 练习pp.210-21:2习题61 复习题全部;习题1;2;3(1)-(8)
文档格式:DOC 文档大小:377.5KB 文档页数:8
第六章定积分 (The definite integration) 第十六讲定积分的计算方法 课后作业: 阅读:第六章6.4,6.5,6.6:pp16--193 预习:第七章7.1,7.2,7.3:pp9--210. 练习pp.182-184:习题6.4:1;2;3,7,8中的单数序号小题;11; 17;20 p.16-188习6.5:12;3,中的单数序号小题;4;6; 8;9;11;24;26;27 作业pp.182-184:习题6.4:3,中的双数序号小题;5;6; 7,(6),(8),(10);8,(2),(4);9;10;1516;18;21 1720
文档格式:DOC 文档大小:445KB 文档页数:8
第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:412.5KB 文档页数:13
第五章向量分析 习题讨论:曲线、曲面积分的计算 习题讨论题 1.计算积分:x2d,C:x+y2+z2=1 x+y+z=0' 2,计算积分:1-cos dx+sin+cos ydx, x xx) 沿任一条不与轴相交的曲线。 3,计算1=2mx2+y2,其中X=ax+by 1XdY-Ydx , ad-bc≠0,C为包围原点的闭曲线 4,计算s,j=ad 其中S:x2+y2+z2=a2,外法线为曲面正向。 5,设函数满足条件:
文档格式:DOC 文档大小:471.5KB 文档页数:8
5-6-1场论初步:三场与三度 5-6-1三场:无旋场、无源场和调和场 5-6-2三度算子在柱、球坐标系下的表示 第二十一讲三场与三度 课后作业: 课后作业: 阅读:第五章第六节:无源场和保守场pp.182--187 预习:第六章第一节:无源场和保守场pp.182-187 作业:习题6:pp.187--188:1;2;3,(2);4,(2);8;9. 5-6场论初步:三场与三度 56-1三个曲型场
文档格式:DOC 文档大小:407KB 文档页数:9
第四章重积分 二重积的计算习题讨论 讨论题目: 1.计算累次积分 S 2.计算二重积分I 其中D={(xy)Ma(y)≤1 3.求二重积分:=d, 2≤ 其中D={(x,y < ≤4 4.求二重积分:I= 其中D={xy)x2+y2≤R2, 5.求二重积分
文档格式:DOC 文档大小:616.5KB 文档页数:5
习题 1.计算下列含参变量积分的导数 (1)F(x)=e-ay'idy (2)F(y)= In yx dx (3)F(=S In(+u)dx 2.设f(x)为可微函数,且F(x)=「(x+y)/(Oy)d,求F(x) 3.求椭园积分E(k)=[√1-k2sin2odg及F(k) -k sin o
首页上页8990919293949596下页末页
热门关键字
搜索一下,找到相关课件或文库资源 973 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有