第九章神经元网络方法及其 应用举例
第九章 神经元网络方法及其 应用举例
Questions: what can -do or can-not-do of a von Neumann machine? Good at Not so good at Interacting with noisy data or Fast arithmetic data from the environment Doing precisely what the programmer programs them to do/Massive parallelism Fault tolerance Adapting to circumstances Where can ANN systems or"Brain"help? where we can 't formulate an algorithmic solution where we can get lots of examples of the behaviour we require,大样本训练 where we need to pick out the structure from existing data e.g. Pattern recognition(recognizing handwritten characters 无数学模型描述的复杂系统识别, yes or not?
Questions: what can-do or can-not-do of a von Neumann machine? Adapting to circumstances Fault tolerance Massive parallelism Doing precisely what the programmer programs them to do Interacting with noisy data or data from the environment Fast arithmetic Good at Not so good at Where can ANN systems or “Brain” help? - where we can't formulate an algorithmic solution. - where we can get lots of examples of the behaviour we require, 大样本训练 - where we need to pick out the structure from existing data. e.g. Pattern recognition (recognizing handwritten characters?) 无数学模型描述的复杂系统识别,YES or NOT ?
Tevatron Fermilab proton-antiproton collider Batavia, illinois Chicago Do Booster p Tevatron )Linear Accelerator 2)Booster 3Main/Injector p source Main Injector 4)Antiproton Source recycler tEvatron @1.96TeV 6)cDF+D必
Main Injector & Recycler Tevatron Booster p p DØ DØDØ p source Batavia, Illinois Chicago Tevatron:Fermilab Proton-Antiproton Collider 1)Linear Accelerator 2)Booster 3)Main/Injector 4)Antiproton Source 5)Tevatron @1.96TeV 6)CDF+DØ
DO Detector muon system 盟雪合 shielding electronics
a Schematic hadron collider detector Tracking system Calorimeter Muon detector Magnetized volume Induces shower Interaction in dense material point Innermost EM lavers tracking layers use silicon fine sampling Hadronic Absorber material la ers e/ Jet: g or g Experimental signature of a quark or gluon Bend angle→ momentum Missing transverse energy Signature of a non-interacting(or weakly interacting) particle like a neutrino or LSP
A Schematic Hadron Collider Detector Hadronic layer s Trackin g system Magnetized volume Calorimeter Induces shower in dense material Innermost tra c kin g l ayers use silicon Muon detector Interaction point Absorber material Ben d angle → momentum e/ γ Experimental signature of a quark or gluon µ Jet: q or g “Missin g transverse e nergy” Signature of a non-interacting (or weakly interacting) particle like a neutrino or LSP EM lay e r s fine sampling p p
The do RunII Detector Do Detector: Forward Mini-drift Central Scintillator Forward Scintilator Quarter r-z View: chambers ICD Shielding e SOLENOID (2n EC SVX New Solenoid, Tracking System Si, SciFi. Preshowers lectronics, Trig DAQ New for Run工: Retained from Run工: Magnetic Tracker: SMT, CFT, 2T Solenoid U/LAr Calorimeter Preshower Central Muon Detectors Forward Muon MI uon orol d Trigger DAQ
The DØ RunII Detector New for Run II: •Magnetic Tracker: SMT, CFT, 2T Solenoid •Preshower •Forward Muon •Trigger & DAQ Retained from Run I: •U/LAr Calorimeter •Central Muon Detectors •Muon Toroid
Vertex& Central Tracking 1. Silicon Microvertex Tracker: w 10um(design) 2. Central Fiber Tracker: scintillator fiber 10 calorimeter Major part of Run II upgrade Central Preshower Solenoid Forward 2T solenoid magnet shower 8 layer CFI L central Firecracker Silicon tracker Monitor Silicon Microvertex Tracker n=n(tg(6/2) Momentum resolution(design) =0.0150.0014p <l0% at 40 GeV
Vertex & Central Tracking 1. Silicon Microvertex Tracker : ~ 10 µm(design) 2. Central Fiber Tracker: scintillator fiber η=−ln(tg(θ/2))
The Calorimeter Liquid Argon sampling Stable, uniform response Ar purity Uranium absorber(Cu/Fe for coarse hadronic) dense absorber hence can be compact Compensated EM and hadronic response Linear response Hermetic with full coverage ynl<42(0≈29) Resolution o/E 15%/VE(Gev)"fine" EM 50%o/VE(GeV)"coarse"jet MET a+b S+C"S72 (run1 sum of et a~1.896eV b~6.7E ) C9.9E-6/GeV
The Calorimeter Z y x θ ϕ • Liquid Argon sampling 9 Stable, uniform response 9 LAr purity • Uranium absorber (Cu/Fe for coarse hadronic) 9 dense absorber hence can be compact 9 Compensated EM and hadronic response 9 Linear response • Hermetic with full coverage 9 |η| < 4.2 (θ ≈ 2o) Resolution: σ/E ~ 15%/√E(GeV) “fine” EM 50%/√E(GeV) “coarse” jet σMET ~ a + b*ST + c*ST2 (run1) ST scalar sum of ET a ~1.89GeV, b ~6.7E-3, c ~9.9E-6/GeV
Muon Detector DO: The muon detector Three muen layers: one inside () two outside (. () the toroid B z magnet (scintillators, drift tabes) seinuilalorx o Toprid The uon svstem is divided into INchi central forward regions each region is subdivided into( 8) Uc建 Calorimeter Two regions Three layers of Scintillator and Drift Tubes Invar. Mass Mu-Mu Central and Forward cN2d·1A(107 A Layer inside Toroid magnet J/Psi Pe来6oe p0·272:3 B &c layer outside Toroid magnet Local/Global 23+2131 Muon rapidity coverage to +2 02 Shielding reduces backgrounds by 50-100x Man·ca±oa: sm8:0 Coarse Local pT resolution Momentum rcsolution(dcsign): =0.1860.005 -40%o at 40 Gev u'u Invar. Mass(Gev)
Muon Detector • Two regions & Three layers of Scintillator and Drift Tubes – Central and Forward – A Layer inside Toroid magnet – B & C Layer outside Toroid magnet • Muon rapidity coverage to ±2 • Shielding reduces backgrounds by 50-100x • Coarse Local pT resolution J/Psi: Local/Global
What we can"see"? 1. Jet"(CAL) 3. Vertex"(SMT:PVrt/Svrt △R=V +△n)" Tower"->"Jet hadronic(0.5)vs y/e(0.2) 4. " muon "(Muon) 2. Track"(CFT+SMT H51444e HiwAo2e4sNs FHen23fen EUshe3 Trn 5. MET"(CAL): Ditc>. 23 hm Ccsn2×24em ∑E。sneW/ o muon B(24an221e
What we can “see”? 2. “Track” (CFT+SMT) : you only know they are stable charged, but e,m,P,K,p? 1. “Jet” (CAL) : 3. “Vertex” (SMT) : PVrt/Svrt you won’t see Quark/gluon or Electron/photon cell -> “Tower” -> “Jet” hadronic(0.5) vs. γ/e(0.2) 4. “muon” (Muon) 5. “MET” (CAL) : Σ Ecell*sinθ w/o muon