第十章高性能计箕和并行算法 §10.1引言 在过忐的近三十年间。仉经历了计机科学和抆术的迅 敬展。具体褒现在市场上计算机的性能价格比到迅遠地提高。 高性能计犷机的概念并元明确的定义,一舭认为犷滾度非 常快的计算机就可以认为是而性能计算机。严格地讲,高性能计 算机是一个所有最先进的硬件,件,网络和算法的錄合概念, “高性能”的椓渔是隨普救术的发晨而墩晨的。 高性能计犷系统中最为关鍵的景是单处理器的大计犷 度,存贮器访问遠度和内部处理器通讯遠度,多处理器系统獍定 性,计算能力与价格比,以及机性能普 冯.纽曼“瓶颈” 为了要超这个“瓶颈”人们发展了肃种计算机体系结构和 相关软件技术的应用原则。一个是外行算法( parallelism),另 一个是流水戴术( pipelining)。 际上,这两个原则部与外行有关。奥际上外行的概念有 种:一种是仅仅时间上的并行,称为水能计算机,另一种既是 时间,也是空间上笄行的并行计算机。 流水绕技术是源于工业自动化生产中的流水能操作丸。在 生产瀛水能上,一批广品的一部分安漱完毕以后,进入流水能的 下一段兜成另一部分安任亦:个流水能上同时对产品进行不
第十章 高性能计算和并行算法 §10. 1 引言 在过去的近三十年间,我们经历了计算机科学和技术的迅速 发展。具体表现在市场上计算机的性能价格比得到迅速地提高。 高性能计算机的概念并无明确的定义,一般认为运算速度非 常快的计算机就可以认为是高性能计算机。严格地讲,高性能计 算机是一个所有最先进的硬件,软件,网络和算法的综合概念, “高性能”的标准是随着技术的发展而发展的。 高性能计算系统中最为关键的要素是单处理器的最大计算速 度,存贮器访问速度和内部处理器通讯速度,多处理器系统稳定 性,计算能力与价格比,以及整机性能等。 冯.纽曼“瓶颈”。 为了要超越这个“瓶颈”,人们发展了两种计算机体系结构和 相关软件技术的应用原则。一个是并行算法(parallelism),另 一个是流水线技术(pipelining)。 实际上,这两个原则都与并行有关。实际上并行的概念有两 种:一种是仅仅时间上的并行,称为流水线计算机,另一种既是 时间,也是空间上并行的并行计算机。 流水线技术是源于工业自动化生产中的流水线操作思想。在 生产流水线上,一批产品的一部分安装完毕以后,进入流水线的 下一段完成另一部分安装任务;整个流水线上同时对产品进行不
同部分的安工作。在并行处理中,瀛水錢技术是一项量耍的养 行执术,目前己经在級计机和工作站上得到广泛的应用, 并行计犷机上算法的具体实视则要复杂得多,要高效用它 就頁不容易。造成逭祥局面的原因是修改算法来垽应流水能操 作,比去适应行计算率易一些。但是。毫无问,向量处理超 级计箕机和并行计犷系统的应用会给们物理学的发昃提供更 多的机過。 由于高性能计算机与当前能够应用的新计算技术相关联,因 而咆与外行算法和流水能技术有着切的联系。 §10.2并行计算机和并行算法 并行计算机是由多个处理器组成(在这些处理器之间还可以 相互逋讯和协调),并能够高遮、高效率地行复杂间题讣算的 计算机系统。并行计箕机的名是相对于串行计算机而言的。 行计算机是指只有单个处理器,顺序执行计算翟序的计算机,世 称为顺序计算机。并行计算作为计箕机技术,是在上世纪70年 代中期提出来的,至今已30年的发晨历史了。该技术的应 用已经带来阜机讣能力的亘大欧选。 为什么戛采用外行计算呢?我们有三个方面的理由: (1)并行计算可以大大加快运算速度,即在更短的时间内完 成相同的计算量,或解决原來根本不能计算的非常复桑
同部分的安装工作。在并行处理中,流水线技术是一项重要的并 行技术,目前己经在超级计算机和工作站上得到广泛的应用, 并行计算机上算法的具体实现则要复杂得多,要高效使用它 就更不容易。造成这样局面的原因是修改算法来适应流水线操 作,比去适应并行计算容易一些。但是。毫无疑问,向量处理超 级计算机和并行计算系统的应用会给我们物理学的发展提供更 多的机遇。 由于高性能计算机与当前能够应用的新计算技术相关联,因 而它与并行算法和流水线技术有着密切的联系。 §10. 2 并行计算机和并行算法 并行计算机是由多个处理器组成(在这些处理器之间还可以 相互通讯和协调),并能够高速、高效率地进行复杂问题计算的 计算机系统。并行计算机的得名是相对于串行计算机而言的。串 行计算机是指只有单个处理器,顺序执行计算程序的计算机,也 称为顺序计算机。并行计算作为计算机技术,是在上世纪 70 年 代中期提出来的,至今已有近 30 年的发展历史了。该技术的应 用已经带来单机计算能力的巨大改进。 为什么要采用并行计算呢?我们有三个方面的理由: (1) 并行计算可以大大加快运算速度,即在更短的时间内完 成相同的计算量,或解决原来根本不能计算的非常复杂
的问题 (2)提高々統的计算机的计算遠度一方面曼到物理上光遠 极限和量子效应的限侧,另一方面计犷机器件产品和村 料的生广曼到加工工艺的限制,其尺寸不可能散得无限 因此我仉只能鞭向外行算法。 (3)并行计算对设鲁的投入較低,既可以节省开文又能兜成 计犷任务。 通常的冯.組曼计算机是属于SISD( Single Instruction Single Data stream computers)单指令单数据流计算机类型计 算机,它的绪袍只有一个处理器,同时可以处理一个单教据流。 其阜數据流是指被处理器从存贮器取出貳写到存贮器上的教据 序列。 外行计算机着采用与某种网络相关的多处理器绪构,则食良 其性能讣到欧瞢。计算机系统的处理器和内夺永有冬种音样的可 能排列。觉仉可以根据一个并行计犷机能够同时执行的指令与处 理数据的多少,将如今广泛使用的结构分成以下类塑 (1)SIMD计算机具有处理器器件阵列,它遭过单个控制单完 来控侧动能设备。这个控侧单元向所有处理器发出相同的执行指 令,隨后所有处理器对迣入的不同教据流选行相同的操作。例如 在SIM外行计算机上做数组的赋值還 X=X+1 即用加法指令对教组Ⅹ的所有元素同时敵加1的操作。可以看出
的问题。 (2) 提高传统的计算机的计算速度一方面受到物理上光速 极限和量子效应的限制,另一方面计算机器件产品和材 料的生产受到加工工艺的限制,其尺寸不可能做得无限 小。因此我们只能转向并行算法。 (3) 并行计算对设备的投入较低,既可以节省开支又能完成 计算任务。 通常的冯.纽曼计算机是属于 SISD(Single Instruction Single Data stream computers) 单指令单数据流计算机类型计 算机,它的结构只有一个处理器,同时可以处理一个单数据流。 其单数据流是指被处理器从存贮器取出或写到存贮器上的数据 序列。 并行计算机若采用与某种网络相关的多处理器结构,则会使 其性能得到改善。计算机系统的处理器和内存条有各种各样的可 能排列。我们可以根据一个并行计算机能够同时执行的指令与处 理数据的多少,将如今广泛使用的结构分成以下类型: (1)SIMD 计算机具有处理器器件阵列,它通过单个控制单元 来控制功能设备。这个控制单元向所有处理器发出相同的执行指 令,随后所有处理器对进入的不同数据流进行相同的操作。例如 在 SIMD 并行计算机上做数组的赋值运算 X=X+1 即用加法指令对数组 X 的所有元素同时做加 1 的操作。可以看出
在SIM并行计算机上特别适合选行向量(数组)的算,它 绪枘可以以很高的处理遠度直接支这种妘算。 (2)MIM计算机具有可以同时独立坛行多条指令,对不同的 数据选行操作。例如对数组的如下运算A=B*C+D+E+F/G,可以分 解为乘法(B*C),加法(D+E)和隙法(F/G)真接交给MIMD计 犷机的直接处理部分同时选行计犷。 在非常大的科学计算程序中,大部分的工作常常是风复地量 复同样的操作。SIM绪枸更适用于处理这类问题的计算。因为 在同样的价位下,SIMD体系结构的处理器元件可以散得比MMD 计算机的所有处理器更快。但是MM计算机明显地提供了更大 的灵活性。并可以用作多用户计机,而这在SIM计机上是 不可能的。 换同时执行程序的不同并行计箕机又可以分为: (1) SPMD(Single Program Multiple Data Stream Computers) 单翟序多教据流外行计机; (2) MPMD Multiple Program Multiple Data Stream Computers)多程序多数据流并行计算机。这神划分依据的执 行单位不是指令而是程序。 SPM外行计机一般是由多个相属的计箕机成处理器构成:而 MPM外行计算机內计算机成处理器的地位是不同的,根据分工 的不同,咆们长兜成的工作也不同,因此可以根据要将不周 的程序放到MM外行计箕机上执行。使得这些程序协调一政地
在 SIMD 并行计算机上特别适合进行向量(数组)的运算,它的 结构可以以很高的处理速度直接支持这种运算。 (2)MIMD 计算机具有可以同时独立运行多条指令,对不同的 数据进行操作。例如对数组的如下运算 A=B*C+D+E+F/G,可以分 解为乘法(B*C),加法(D+E)和除法(F/G)直接交给 MIMD 计 算机的直接处理部分同时进行计算。 在非常大的科学计算程序中,大部分的工作常常是反复地重 复同样的操作。SIMD 结构更适用于处理这类问题的计算。因为 在同样的价位下,SIMD 体系结构的处理器元件可以做得比 MIMD 计算机的所有处理器更快。但是 MIMD 计算机明显地提供了更大 的灵活性,并可以用作多用户计算机,而这在 SIMD 计算机上是 不可能的。 按照同时执行程序的不同并行计算机又可以分为: (1) SPMD(Single Program Multiple Data Stream Computers) 单程序多数据流并行计算机; (2) MPMD ( Multiple Program Multiple Data Stream Computers)多程序多数据流并行计算机。这种划分依据的执 行单位不是指令而是程序。 SPMD 并行计算机一般是由多个相同的计算机或处理器构成;而 MPMD 并行计算机内计算机或处理器的地位是不同的,根据分工 的不同,它们擅长完成的工作也不同,因此可以根据需要将不同 的程序放到 MPMD 并行计算机上执行,使得这些程序协调一致地
皃成给定任务。 并行计算机也可以按照内存的结构来分成“分布式内存》 和“共事式内存”两种基本结构的并行计算机。 在分布式系統中每个处理器有它自己的局域内夺,不存在公 共可用的存贮单元,各处理器可以通过通讯网络相互作用(例如, 与它仉的局域内交换数据)。 在失事式内訏绪枹中,所有处器部能够邋过某些逦讯网络 访问共事的内夺(有时它们也可以与向量眚存器或其它处理器的 高遠鰻冲存储器沟通)。在仅仅只有单地址空间的况下,共寡 式内存結枘比分布式内存更容易鑰程。 分布式内存模型在当今几种超级计犷机和并行计犷机工作站 上已经采用。这些并行计犷机上郗装有教十个功能强大的向量处 理器。瘘而,目前流行的机群计算( cluster computing)大部 分釆用分布式失丁内夺棋式绪。 并行犷法是在给定并行下的一种具体明确的计算方法和 步暻。其分类有不同的分类才法棂据外行讣任务的大小分类, 可以分为三类 )粗粒度弊行算法;它所含的计算任务有大的计算 量和校复杂的计算程序。 (2)细粒度外行算法;它斯含的讣算任务有較小的计 量和校短的计犷程序。 (3)中粒度并行算法;它所含的计算任务的大小和计算
完成给定任务。 并行计算机也可以按照内存的结构来划分成“分布式内存” 和“共享式内存”两种基本结构的并行计算机。 在分布式系统中每个处理器有它自己的局域内存,不存在公 共可用的存贮单元,各处理器可以通过通讯网络相互作用(例如, 与它们的局域内存交换数据)。 在共享式内存结构中,所有处理器都能够通过某些通讯网络 访问共享的内存(有时它们也可以与向量寄存器或其它处理器的 高速缓冲存储器沟通)。在仅仅只有单地址空间的情况下,共享 式内存结构比分布式内存更容易编程。 分布式内存模型在当今几种超级计算机和并行计算机工作站 上已经采用,这些并行计算机上都装有数十个功能强大的向量处 理器。然而,目前流行的机群计算(cluster computing)大部 分采用分布式共享内存模式结构。 并行算法是在给定并行模型下的一种具体明确的计算方法和 步骤。其分类有不同的分类方法。根据并行计算任务的大小分类, 可以分为三类: (1) 粗粒度并行算法;它所含的计算任务有较大的计算 量和较复杂的计算程序。 (2) 细粒度并行算法;它所含的计算任务有较小的计算 量和较短的计算程序。 (3) 中粒度并行算法;它所含的计算任务的大小和计算
程序的长短在粗粒度和细粒度兩种类烈的犷法之 间。 棂据并行计算的基本对可以分为:数值并行计和非数 并行计。际上网者之间外无严格的界限。非数值计算也会用 于高贛度数值讣算,数值计算中也会有查找、匹配亭非数值计算 成分。实际分类时,主戛是权据主要的计犷量所属范嚼以及宏观 的计算方法来判斷。 根据外行计选程间的赖关系可以分为 (1)同乡并行算法;该算法是过一个全局的时钟来控制 部分的步世。将任翕中的各个部分计犷同步地向前 (2)异步并行算法;它执行的吝部分计算步化之间没有关 联,互不同步;在操作中,咆们根据计过程的不同 阶段决定穆、继鲼成终止。对于SDM并行计算机一 舭适合用同步并行算法,而MM并行计算机则适合用 异步外行算法。 §10.3并行编程 设计一个高放的外行法并不是一件容易的事。它的设计过 程比較复杂。通常编程设计过程可以分为四步 ●任务划分( Partitioning)。该阶斆将蓬个倇用域或功能分解
程序的长短在粗粒度和细粒度两种类型的算法之 间。 根据并行计算的基本对象可以分为:数值并行计算和非数值 并行计算。实际上两者之间并无严格的界限。非数值计算也会用 于高精度数值计算,数值计算中也会有查找、匹配等非数值计算 成分。实际分类时,主要是根据主要的计算量所属范畴以及宏观 的计算方法来判断。 根据并行计算进程间的依赖关系可以分为: (1) 同步并行算法;该算法是通过一个全局的时钟来控制 各部分的步伐,将任务中的各个部分计算同步地向前 推进。 (2) 异步并行算法;它执行的各部分计算步伐之间没有关 联,互不同步;在操作中,它们根据计算过程的不同 阶段决定等待、继续或终止。对于 SIDM 并行计算机一 般适合用同步并行算法,而 MIMD 并行计算机则适合用 异步并行算法。 §10. 3 并行编程 设计一个高效的并行算法并不是一件容易的事,它的设计过 程比较复杂。通常编程设计过程可以分为四步: z 任务划分(Partitioning)。该阶段将整个使用域或功能分解
成一些小的计算任奇,它的目的是耍羯示和亓拓并行执行的 机食; ●通信( Communication)分析。由任务划分产生的各项任务一般 都不能独立完成。可能辯要确定各项任毒中所鲁交换的教据 和协调音项任务的执行。信分析可以检测在任务捌分阶段 划分的合理性; 任务组合( Agglomeration)。换照性能戛求和实现的代价來考 寒角两个阶段的结果,必要时可以将一些小的任务组合成夏 大的任办以提高执行效亭和减少通信开销; 处理器映射 Mapping)。效是设计的最后阶段。要决定将每 个任务分配到哪个处理器上去执行。目的是最小化全局执 行时间和通讯成本,并最大化处理器的利用率。 上迷效程简称为PCAM设计过程 目前量量的并行编程棋乳 (1)数据行( Data Paralle1)模型(它的初裹是为了 SIMD并行机) (2)消息递( Message Passing)模型(其物哀是为了多计 算机) (3)共享变量桃型 (4)函数式糗型善 后面两种的疝用都没有前面两种那禅普
成一些小的计算任务,它的目的是要揭示和开拓并行执行的 机会; z 通信(Communication)分析。由任务划分产生的各项任务一般 都不能独立完成,可能需要确定各项任务中所需交换的数据 和协调各项任务的执行。通信分析可以检测在任务划分阶段 划分的合理性; z 任务组合(Agglomeration)。按照性能要求和实现的代价来考 察前两个阶段的结果,必要时可以将一些小的任务组合成更 大的任务以提高执行效率和减少通信开销; z 处理器映射(Mapping)。这是设计的最后阶段。要决定将每一 个任务分配到哪个处理器上去执行。目的是要最小化全局执 行时间和通讯成本,并最大化处理器的利用率。 上述过程简称为 PCAM 设计过程。 目前最重要的并行编程模型: (1) 数据并行(Data Parallel)模型(它的初衷是为了 SIMD 并行机)、 (2) 消息传递(Message Passing)模型(其初衷是为了多计 算机)、 (3) 共享变量模型、 (4) 函数式模型等, 后面两种的应用都没有前面两种那样普遍
數据并行的含义是将相同的操作同时作用于不同數据,因此 不但鸶用于在SIM计算机上实親。也可以在SPM并行计算机上 运行,这取决于粒度大小。SIMD程序着量开发指令级中细粒度 的外行性,SPMD程序着量开发子程序級中粒度的并行性。在向 量机上遠尅教据并行求解问题的虫崴也说明教据并行可以高放 率地解决一大类料学和工程计算问题数据外行编程模型是一种 较痛层次上的棋到。咆提供鋡鑰程者一个全局的地址空间。一般 这种形式的语言本身就提供外行执行的语义。对于编程者,实现 据并行的程序,只帚要筒单地指明执行什么并行操作以及行 操作对永。例如对于教组的运算,遢过语旬 A=B+C(或共它的襄达方式) 就可以实现B和C数组的对应元素相加后结果赋给A。因此教据 并行的衰达是相对筒单和简洁的,它不卿要编程者关心并行机是 如何对该操作选行外行执行的。对于非数据并行类问题編程棋 型,如景也釆用数据并行的方式來解决,一舭难以取得高的效率, 数据外行不率易歌达,甚至无法达其它形式的外行征。数据 外行鑰程目前面临的主要问题是要实淝高效的編译。有了高效的 编译器。教据外行程序就可以在共事内存和分布式内存的并行机 上部得到高执行效率。有了高效的編译器,就可以提高外行程序 的开效率,提高养行程序的可移植性。 消息食递鱻程模型是在各个并行执行部分之间食递消息,相 互遠讯。消丸可以是指令、数据、同步信号或中斷信号瞢。消胤
数据并行的含义是将相同的操作同时作用于不同数据,因此 不但适用于在 SIMD 计算机上实现,也可以在 SPMD 并行计算机上 运行,这取决于粒度大小。SIMD 程序着重开发指令级中细粒度 的并行性,SPMD 程序着重开发子程序级中粒度的并行性。在向 量机上通过数据并行求解问题的实践也说明数据并行可以高效 率地解决一大类科学和工程计算问题。数据并行编程模型是一种 较高层次上的模型。它提供给编程者一个全局的地址空间。一般 这种形式的语言本身就提供并行执行的语义。对于编程者,实现 数据并行的程序,只需要简单地指明执行什么并行操作以及并行 操作对象。例如对于数组的运算,通过语句 A=B+C(或其它的表达方式) 就可以实现 B 和 C 数组的对应元素相加后结果赋给 A。因此数据 并行的表达是相对简单和简洁的,它不需要编程者关心并行机是 如何对该操作进行并行执行的。对于非数据并行类问题编程模 型,如果也采用数据并行的方式来解决,一般难以取得高的效率, 数据并行不容易表达,甚至无法表达其它形式的并行特征。数据 并行编程目前面临的主要问题是要实现高效的编译。有了高效的 编译器,数据并行程序就可以在共享内存和分布式内存的并行机 上都得到高执行效率。有了高效的编译器,就可以提高并行程序 的开发效率,提高并行程序的可移植性。 消息传递编程模型是在各个并行执行部分之间传递消息,相 互通讯。消息可以是指令、数据、同步信号或中断信号等。消息
食递一舭是对分布式内存并行计机的方法,但是也可以适用于 失事式内音的并行计算机。消丸食递为鑰程者提供了更灵活的挖 制手段和达并行的方法,一些用数据外行很难歌达的并行算法 都可以用消丸传濋編程桃型来实砚。消息传递鑰程τ型比数据外 行编程褀到叉活,还具有各种各样的控制手段,这就可以使程 序高效率运行。消胤递程序是由多个选程组成,每个选程都有 自己的控侧纜。由于采用消食濋編程模型猾贔鑰程者来明确地 为进程分配教据和负敢,因此它也俍得编程者的工作量增加,其 編程的級别比較低。虽然这禅,消食递的基本邋儈模式是筒单 和清楚的,习和尊这些部分外不困难,因此大量的并行程序 设计仍嶽是消丸俊递并行编程模式的。 并行程序是鼎过并行语言来褒达。并行语言的产生有三 种方式 (1)设计金新的并行语言 (2)扩晨原來串行语言的语法成分,使它文持并行征; 3)为串行语言提供可调节的行库,并不欧变串行语言。 目常用的是第(2)和(3)两种方式,最常用的是第(3) 种。并行语言的发展十分迅逭,并行语言的种类也很多,但是真 正用起来外被广泛接曼的语言却寥寥无几。对 FORTRAN和C 语言的扩充是最常见的外行语言产生办法。如MI就是 FORTRAN 和C语言绪合起来奧现的
传递一般是对分布式内存并行计算机的方法,但是也可以适用于 共享式内存的并行计算机。消息传递为编程者提供了更灵活的控 制手段和表达并行的方法,一些用数据并行很难表达的并行算法 都可以用消息传递编程模型来实现。消息传递编程模型比数据并 行编程模型更灵活,还具有各种各样的控制手段,这就可以使程 序高效率运行。消息传递程序是由多个进程组成,每个进程都有 自己的控制线。由于采用消息传递编程模型需要编程者来明确地 为进程分配数据和负载,因此它也使得编程者的工作量增加,其 编程的级别比较低。虽然这样,消息传递的基本通信模式是简单 和清楚的,学习和掌握这些部分并不困难,因此大量的并行程序 设计仍然是消息传递并行编程模式的。 并行程序是需要通过并行语言来表达。并行语言的产生有三 种方式: (1) 设计全新的并行语言; (2) 扩展原来串行语言的语法成分,使它支持并行特征; (3) 为串行语言提供可调节的并行库,并不改变串行语言。 目前常用的是第(2)和(3)两种方式,最常用的是第(3) 种。并行语言的发展十分迅速,并行语言的种类也很多,但是真 正使用起来并被广泛接受的语言却寥寥无几。对 FORTRAN 和 C 语言的扩充是最常见的并行语言产生办法。如 MPI 就是 FORTRAN 和 C 语言结合起来实现的