数理科学部 鼓励探索、突出原创”典型案例 数学 保持哈密尔顿系统结构的数值分析理论 在构造天体力学、量子力学、电磁学等学科中许多数学模型 的数值算法时,需要尽可能多的保持原系统的内在对称性、守恒 性等物理特性,传统算法并未针对这些物理特性或本质特征来构 造数值格式。我国学者针对经典哈密尔顿系统,创立了一种几何 上定性、数值上定量的数值分析理论,应用生成函数法和幂级数 法构造辛格式,既严格保持哈密尔顿系统辛几何结构,又很好的 保持其物理性质,彻底解决了长时间计算稳定性问题,现称这种 高性能新型算法为辛算法。辛算法在哈密尔顿系统的数值计算中 表现出独特优越性,县有很强的数值预测能力和数值跟踪能力, 在其它许多科学、技术和工程领域也有广泛而深刻的应用。辛算 法的保结构思想已成为现代计算数学算法构造和分析的基本理 念,开启了现代科学计算的一个重要研究方向一保结构算法的研 究 力学 湍流的时空关联理论和方法 湍流是流体力学的核心科学问题,时空关联反映了湍流的时 间和空间尺度耦合的统计特性,其里程碑成果是它的泰勒模型和 Kraichnan模型。但是它们均不能反映湍流的涡传播和畸变的耦
数理科学部 “鼓励探索、突出原创”典型案例 数学: 保持哈密尔顿系统结构的数值分析理论 在构造天体力学、量子力学、电磁学等学科中许多数学模型 的数值算法时,需要尽可能多的保持原系统的内在对称性、守恒 性等物理特性,传统算法并未针对这些物理特性或本质特征来构 造数值格式。我国学者针对经典哈密尔顿系统,创立了一种几何 上定性、数值上定量的数值分析理论,应用生成函数法和幂级数 法构造辛格式,既严格保持哈密尔顿系统辛几何结构,又很好的 保持其物理性质,彻底解决了长时间计算稳定性问题,现称这种 高性能新型算法为辛算法。辛算法在哈密尔顿系统的数值计算中 表现出独特优越性,具有很强的数值预测能力和数值跟踪能力, 在其它许多科学、技术和工程领域也有广泛而深刻的应用。辛算 法的保结构思想已成为现代计算数学算法构造和分析的基本理 念,开启了现代科学计算的一个重要研究方向-保结构算法的研 究。 力学: 湍流的时空关联理论和方法 湍流是流体力学的核心科学问题,时空关联反映了湍流的时 间和空间尺度耦合的统计特性,其里程碑成果是它的泰勒模型和 Kraichnan模型。但是它们均不能反映湍流的涡传播和畸变的耦
合效应,从而限制了对湍流时空耦合规律和湍流噪声产生机制的 基本认识。我国学者引入湍流时空关联过程自相似的概念研究湍 流的时空耦合,将柯尔莫哥洛夫和泰勒的理论结合起来,提出了 时空关联的EA模型,解决了泰勒模型和 Kraichnan模型缺乏涡传 播和畸变耦合效应的问题。在此基础上,发展了湍流大涡模拟的 时空关联方法,由此得到的湍流模型克服了能量平衡法的根本缺 陷,它们能够正确计算时空能谱,进而精准地预测湍流的嗓声谱。 上述原创成果开辟了湍流领域一个新的研究方向,并在高速运载 装置的湍流噪声问题中得到了重要的应用。 天文: 建立测量银河系旋臂结构新方法 银河系旋臂结构是天文学中持续时间最长但至今仍未解决 的重大间题之一。尽管有关银河系结构的模型已有100多种,由 于这些模型所依赖的天体距离的不确定性,使得一些基本问题, 如银河系尺度、旋臂形状和数量等远未解决。因此,精确测定天 体的距离是研究银河系结构的关键。我国学者首次提出用甚长基 线干涉陲测量天体脉泽的三角视差距离来研究银河系旋臂结构 的方法,实现了天体测量技术的划时代突破,使距离测量精度比 以前天文学中的最高测量精度提高了两个量级。通过该方法精确 测定了银河系英仙臂的距离,彻底解决了天文界关于英仙臂距离 的长期争论,并首次发现本地臂是银河系的一条旋臂,彻底排除 了天文界长期以来认为本地臂只是由零星物质组成的微小次结 构的观点,对经典密度波理论提出了巨大挑战,率先提出并证实
合效应,从而限制了对湍流时空耦合规律和湍流噪声产生机制的 基本认识。我国学者引入湍流时空关联过程自相似的概念研究湍 流的时空耦合,将柯尔莫哥洛夫和泰勒的理论结合起来,提出了 时空关联的EA模型,解决了泰勒模型和Kraichnan模型缺乏涡传 播和畸变耦合效应的问题。在此基础上,发展了湍流大涡模拟的 时空关联方法,由此得到的湍流模型克服了能量平衡法的根本缺 陷,它们能够正确计算时空能谱,进而精准地预测湍流的噪声谱。 上述原创成果开辟了湍流领域一个新的研究方向,并在高速运载 装置的湍流噪声问题中得到了重要的应用。 天文: 建立测量银河系旋臂结构新方法 银河系旋臂结构是天文学中持续时间最长但至今仍未解决 的重大问题之一。尽管有关银河系结构的模型已有 100 多种,由 于这些模型所依赖的天体距离的不确定性,使得一些基本问题, 如银河系尺度、旋臂形状和数量等远未解决。因此,精确测定天 体的距离是研究银河系结构的关键。我国学者首次提出用甚长基 线干涉阵测量天体脉泽的三角视差距离来研究银河系旋臂结构 的方法,实现了天体测量技术的划时代突破,使距离测量精度比 以前天文学中的最高测量精度提高了两个量级。通过该方法精确 测定了银河系英仙臂的距离,彻底解决了天文界关于英仙臂距离 的长期争论,并首次发现本地臂是银河系的一条旋臂,彻底排除 了天文界长期以来认为本地臂只是由零星物质组成的微小次结 构的观点,对经典密度波理论提出了巨大挑战,率先提出并证实
银河系不是单纯由宏伟的、规则的螺旋形主旋臂组成,而是在主 旋臂间充满着次结构的非常复杂的旋涡星系的观点。该系统性 开创性的工作,被国内外专家评价为开创新时代、开拓新领域的 里程碑式的工作,推动发起了美国国立射电天文台史上最大的国 际合作项目- Bessel,获得了广泛认可的银河系最精确的旋臂结 构模型、基本参数和旋转曲线。 物理I 量子反常霍尔效应的实验发现 量子反常霍尔效应是一种不需要外加磁场、基于全新物理原 理的量子霍尔效应。它不但是量子霍尔态得以实际应用的关键, 还是很多新奇量子效应实现的基础。实验发现量子反常霍尔效应 是凝聚态物理学的重大科学目标之一,二十多年来没有实质性实 验进展。我国学者建立了BiTe3家族拓扑绝缘体分子束外延生长 动力学并发展出高质量拓扑绝缘体薄膜材料的制备方法,首次制 备出了同时具备铁磁性、体绝缘性、拓扑非平庸性的磁性掺杂拓 扑绝缘体薄膜,在这种薄膜中首次观测到量子反常霍尔效应。这 是从原理上的全新实验发现,是从0到1的研究工作。该发现被 2016年诺贝尔物理学奖评奖委员会和获得者霍尔丹列为拓扑物 质领域近二十年来最重要的实验发现,是建国以来我国物理学家 发现的一个重要科学效应,为多种新奇量子现象的实现铺平了道 路
银河系不是单纯由宏伟的、规则的螺旋形主旋臂组成,而是在主 旋臂间充满着次结构的非常复杂的旋涡星系的观点。该系统性、 开创性的工作,被国内外专家评价为开创新时代、开拓新领域的 里程碑式的工作,推动发起了美国国立射电天文台史上最大的国 际合作项目-BeSSeL,获得了广泛认可的银河系最精确的旋臂结 构模型、基本参数和旋转曲线。 物理Ⅰ 量子反常霍尔效应的实验发现 量子反常霍尔效应是一种不需要外加磁场、基于全新物理原 理的量子霍尔效应。它不但是量子霍尔态得以实际应用的关键, 还是很多新奇量子效应实现的基础。实验发现量子反常霍尔效应 是凝聚态物理学的重大科学目标之一,二十多年来没有实质性实 验进展。我国学者建立了 Bi2Te3家族拓扑绝缘体分子束外延生长 动力学并发展出高质量拓扑绝缘体薄膜材料的制备方法,首次制 备出了同时具备铁磁性、体绝缘性、拓扑非平庸性的磁性掺杂拓 扑绝缘体薄膜,在这种薄膜中首次观测到量子反常霍尔效应。这 是从原理上的全新实验发现,是从 0 到 1 的研究工作。该发现被 2016 年诺贝尔物理学奖评奖委员会和获得者霍尔丹列为拓扑物 质领域近二十年来最重要的实验发现,是建国以来我国物理学家 发现的一个重要科学效应,为多种新奇量子现象的实现铺平了道 路
物理II 大亚湾反应堆中徽子实验发现新的中微子振荡模式 中微子是构成物质世界的基本粒子,共有3种类型,不带电, 质量极其微小。不同种类的中微子在飞行过程中能相互转换,物 理学称之为“中微子振荡”。原则上三种中微子之间相互振荡, 应该有三种模式。其中两种模式已被大气中微子实验和太阳中微 子实验所证实。第三种振荡(对应中微子混合角θ13)则一直未 被发现,甚至有理论预言其根本不存在。由于中微子混合角θ13 是中微子振荡的六个基本参数之一,也是物理学中的28个基本 参数之一,其大小关系到中微子物理研究未来的发展方向,并和 宇宙中的“反物质消失之谜”相关,科学意义重大,是国际上中 微子研究的热点。我国学者利用大亚湾反应堆功率高,探测距离 优,山体屏蔽好的优势,攻克了多项技术难关,完成样机硏制、 工程设计、探测器建造和数据采集与分析,首次提出了系列降低 系统误差的办法,精度比过去国际最好水平提高近一个量级,于 2012年宣布发现新的中微子振荡模式,并精确测定其振荡几率 之后继续保持高质量的运行,取得了世界上最大的反应堆中微子 数据样本,不断刷新θ13、中微子质量平方差、反应堆中微子能 谱等的测量精度,带领中微子研究进入精确测量时代
物理 II 大亚湾反应堆中微子实验发现新的中微子振荡模式 中微子是构成物质世界的基本粒子,共有 3 种类型,不带电, 质量极其微小。不同种类的中微子在飞行过程中能相互转换,物 理学称之为“中微子振荡”。原则上三种中微子之间相互振荡, 应该有三种模式。其中两种模式已被大气中微子实验和太阳中微 子实验所证实。第三种振荡(对应中微子混合角θ13)则一直未 被发现,甚至有理论预言其根本不存在。由于中微子混合角θ13 是中微子振荡的六个基本参数之一,也是物理学中的 28 个基本 参数之一,其大小关系到中微子物理研究未来的发展方向,并和 宇宙中的“反物质消失之谜”相关,科学意义重大,是国际上中 微子研究的热点。我国学者利用大亚湾反应堆功率高,探测距离 优,山体屏蔽好的优势,攻克了多项技术难关,完成样机研制、 工程设计、探测器建造和数据采集与分析,首次提出了系列降低 系统误差的办法,精度比过去国际最好水平提高近一个量级,于 2012 年宣布发现新的中微子振荡模式,并精确测定其振荡几率。 之后继续保持高质量的运行,取得了世界上最大的反应堆中微子 数据样本,不断刷新θ13、中微子质量平方差、反应堆中微子能 谱等的测量精度,带领中微子研究进入精确测量时代
聚焦前沿、独辟蹊径”典型案例 数学: 扩充未来光管猜想的解决 扩充未来光管猜想,即扩充未来光锥管域是全纯域。全纯域 是多复变函数中最基本、最重要的概念之一。起源于量子场论的 扩充未来光管猜想已有40多年的历史,被诸多世界数学家和物理 学家研究而未得到解决,被公认为是著名的困难问题,是多复变 函数论研究的前沿、核心问题。在许多著名文献中,比如国际权 威的《数学百科全书》“量子场论”条目都把它列为未解决问题。 我国学者利用华罗庚建立的有关典型域的经典理论和方法,结合 一些现代数学工具和技巧,独辟蹊径,完全证明了扩充未来光管 猜想。这是一项具有中国多复变学派特色、得到国际数学界特别 是多复变函数论领域充分肯定的研究成果,被认为是二十世纪下 半叶数学发展的亮点作之一,被评价为获得了新知识,被写入 史料性著作《十世纪的数学大事》、《数学的发展:1950-200 力学 微米尺度异质界面中的结构超滑 结构超滑是表界面力学的重要研究领域,自1983年理论上提 出有可能在两个原子级光滑且非公度接触的固体表面实现几乎 为零摩擦的状态后,这种现在被称为结构超滑的现象长期未得到 证实。2004年荷兰科学家首次在纳米尺度、超高真空条件下观察 到石墨-石墨烯界面结构超滑。如何实现更大尺度结构超滑是学
“聚焦前沿、独辟蹊径”典型案例 数学: 扩充未来光管猜想的解决 扩充未来光管猜想,即扩充未来光锥管域是全纯域。全纯域 是多复变函数中最基本、最重要的概念之一。起源于量子场论的 扩充未来光管猜想已有40多年的历史,被诸多世界数学家和物理 学家研究而未得到解决,被公认为是著名的困难问题,是多复变 函数论研究的前沿、核心问题。在许多著名文献中,比如国际权 威的《数学百科全书》“量子场论”条目都把它列为未解决问题。 我国学者利用华罗庚建立的有关典型域的经典理论和方法,结合 一些现代数学工具和技巧,独辟蹊径,完全证明了扩充未来光管 猜想。这是一项具有中国多复变学派特色、得到国际数学界特别 是多复变函数论领域充分肯定的研究成果,被认为是二十世纪下 半叶数学发展的亮点工作之一,被评价为获得了新知识,被写入 史料性著作《二十世纪的数学大事》、《数学的发展:1950-2000》。 力学: 微米尺度异质界面中的结构超滑 结构超滑是表界面力学的重要研究领域,自1983年理论上提 出有可能在两个原子级光滑且非公度接触的固体表面实现几乎 为零摩擦的状态后,这种现在被称为结构超滑的现象长期未得到 证实。2004年荷兰科学家首次在纳米尺度、超高真空条件下观察 到石墨-石墨烯界面结构超滑。如何实现更大尺度结构超滑是学
科前沿问题。2008年,我国学者首次实现微米尺度石墨片在室温 大气环境下的自回复现象,并于2012年通过测量该体系单晶石墨 界面摩擦力和自锁现象,证实了2008年发现的自回复现象为结构 超滑,从而确认了微米尺度结构超滑的存在。2018年,进而实验 展示了微米尺度石墨一六方氮化硼单晶界面中旋转稳定的结构超 滑特性。这些成果表明了我国学者在结构超滑领域研究中的国际 影响力。 天文: 建立恒星绝热物质损失模型 恒星级双黑洞、双中子星、双白矮星等致密天体引力波源, 以及X射线双星、脉冲星、Ia型超新星等这些处于现代天文学 研究前沿地位的重要天体,都是双星演化的产物。这些天体在形 成过程中一般会经历双星间的物质交换和公共包层演化过程。双 星间物质交换的稳定性,以及非稳定物质交换时形成的公共包层 和演化,是双星演化的两个基本未解问题。人们在研究双星演化 形成的相关天体时,稳定性判据通常采用的是上世纪80年代末 多方模型的结果,导致双星演化理论和观测上有很多显而易见的 承盾。为了从根本上解决双星演化的两个基本问题,我国学者建 立了恒星绝热物质损失模型,用最少的物理假设还原了真实的物 理过程,并在此基础上研究了双星发生非稳定物质交换的判据和 公共包层演化过程,很好地解释了激变变星的质量比上限。这些 研究成果的应用,可以大幅度提高双星相关天体研究的准确性和 可靠性。基于该研究结果的双星星族合成研究显示,Ia型超新
科前沿问题。2008年,我国学者首次实现微米尺度石墨片在室温 大气环境下的自回复现象,并于2012年通过测量该体系单晶石墨 界面摩擦力和自锁现象,证实了2008年发现的自回复现象为结构 超滑,从而确认了微米尺度结构超滑的存在。2018年,进而实验 展示了微米尺度石墨-六方氮化硼单晶界面中旋转稳定的结构超 滑特性。这些成果表明了我国学者在结构超滑领域研究中的国际 影响力。 天文: 建立恒星绝热物质损失模型 恒星级双黑洞、双中子星、双白矮星等致密天体引力波源, 以及 X 射线双星、脉冲星、Ia 型超新星等这些处于现代天文学 研究前沿地位的重要天体,都是双星演化的产物。这些天体在形 成过程中一般会经历双星间的物质交换和公共包层演化过程。双 星间物质交换的稳定性,以及非稳定物质交换时形成的公共包层 和演化,是双星演化的两个基本未解问题。人们在研究双星演化 形成的相关天体时,稳定性判据通常采用的是上世纪 80 年代末 多方模型的结果,导致双星演化理论和观测上有很多显而易见的 矛盾。为了从根本上解决双星演化的两个基本问题,我国学者建 立了恒星绝热物质损失模型,用最少的物理假设还原了真实的物 理过程,并在此基础上研究了双星发生非稳定物质交换的判据和 公共包层演化过程,很好地解释了激变变星的质量比上限。这些 研究成果的应用,可以大幅度提高双星相关天体研究的准确性和 可靠性。基于该研究结果的双星星族合成研究显示,Ia 型超新
星共生星通道的诞生率是原来的5倍,缓解了现有理论下Ia型 超新星诞生率严重不足的问题。 物理I 多粒子纠缠态的确定性制备 量子纠缠是多粒子间特有的一种关联现象,利用量子纠缠态 能够使得测量精度超越标准量子极限,在量子计算和量子精密测 量等方面具有重要的应用价值。多粒子纠缠态的制备与操控一直 是物理学家孜孜不倦的奋斗目标,但随着粒子数的增多,通过系 统粒子间的相互作用来演变成一个纠缠状态的手段变得越来越 复杂和低效。我国学者独辟蹊径,采用调控多粒子系统量子相变, 确定性制备出了一种特殊的多粒子纠缠态。通过对碱金属铷-87 原子玻色-爱因斯坦凝聚体施加连续调控的微波场,近绝热的缓 慢驱动凝聚体在基态连续发生两次量子相变,实现了约11000个 原子双数态的确定性制备。测量显示不同内态(磁子能级)间原 子数差值的涨落低于经典极限10.7±0.6分贝,反映系统纯度的 集体自旋归一化长度为近似完美的0.99士0.01。依据理论判据, 这两个指标反映该多体纠缠态用于干涉测量时可以提供超越标 准量子极限精度约6分贝的相位测量灵敏度,以及至少含有910 个纠缠原子数(1标准方差的置信度),创造了当时能确定性制 备的量子纠缠粒子数目的世界纪录,在量子精密测量领域有较强 的应用前景
星共生星通道的诞生率是原来的 5 倍,缓解了现有理论下 Ia 型 超新星诞生率严重不足的问题。 物理Ⅰ 多粒子纠缠态的确定性制备 量子纠缠是多粒子间特有的一种关联现象,利用量子纠缠态 能够使得测量精度超越标准量子极限,在量子计算和量子精密测 量等方面具有重要的应用价值。多粒子纠缠态的制备与操控一直 是物理学家孜孜不倦的奋斗目标,但随着粒子数的增多,通过系 统粒子间的相互作用来演变成一个纠缠状态的手段变得越来越 复杂和低效。我国学者独辟蹊径,采用调控多粒子系统量子相变, 确定性制备出了一种特殊的多粒子纠缠态。通过对碱金属铷-87 原子玻色-爱因斯坦凝聚体施加连续调控的微波场,近绝热的缓 慢驱动凝聚体在基态连续发生两次量子相变,实现了约 11000 个 原子双数态的确定性制备。测量显示不同内态(磁子能级)间原 子数差值的涨落低于经典极限 10.7±0.6 分贝,反映系统纯度的 集体自旋归一化长度为近似完美的 0.99±0.01。依据理论判据, 这两个指标反映该多体纠缠态用于干涉测量时可以提供超越标 准量子极限精度约 6 分贝的相位测量灵敏度,以及至少含有 910 个纠缠原子数(1 标准方差的置信度),创造了当时能确定性制 备的量子纠缠粒子数目的世界纪录,在量子精密测量领域有较强 的应用前景
物理II LHCb实验首次发现五夸克态 质子和中子具有更深层次的结构,它们是由夸克组成的。除了质 子和中子,科学家在宇宙线和加速器实验上还发现了上千个由夸 克组成的粒子,它们被统称为强子。已发现的强子大都由一个夸 克和一个反夸克、三个夸克(或三个反夸克)组成。量承色动力 学是描述夸克间强相互作用的基本理论,但由于其在原子核尺度 上表现出的非微扰性质,日前人类还不能从第原理严格预言强 子的性质,理解强相互作用规律是当代粒子物理与核物理研究的 最前沿课题之一。早在粒子物理“夸克模型”理论创建的初期, 包括诺贝尔奖获得者盖尔曼等科学家就预言可能存在由五个夸 克组成的强子,其后的五十年间实验上没能得出确切结论。2015 年大型强子对撞机上的底夸克实验组(LHCb)首次发现五夸克态。 我国学者在研究A8重子衰变到J/vKP过程中,发现不变 质量谱中存在明显的增强结构,研究发现该增强结构是由五夸克 态导致,从而在实验上确认了五夸克态的存在。五夸克态的发现 丰富了强子谱学研究的内容,为探索强相互作用非微扰性质打开 了一个新窗口。对五夸克态的形成机制和内部结构的研究有可能 使我们对强相互作用的理解提高到一个新的层次
物理 II LHCb实验首次发现五夸克态 质子和中子具有更深层次的结构,它们是由夸克组成的。除了质 子和中子,科学家在宇宙线和加速器实验上还发现了上千个由夸 克组成的粒子,它们被统称为强子。已发现的强子大都由一个夸 克和一个反夸克、三个夸克(或三个反夸克)组成。量子色动力 学是描述夸克间强相互作用的基本理论,但由于其在原子核尺度 上表现出的非微扰性质,目前人类还不能从第一原理严格预言强 子的性质,理解强相互作用规律是当代粒子物理与核物理研究的 最前沿课题之一。早在粒子物理“夸克模型”理论创建的初期, 包括诺贝尔奖获得者盖尔曼等科学家就预言可能存在由五个夸 克组成的强子,其后的五十年间实验上没能得出确切结论。2015 年大型强子对撞机上的底夸克实验组(LHCb)首次发现五夸克态。 我国学者在研究 重子衰变到 过程中,发现 不变 质量谱中存在明显的增强结构,研究发现该增强结构是由五夸克 态导致,从而在实验上确认了五夸克态的存在。五夸克态的发现 丰富了强子谱学研究的内容,为探索强相互作用非微扰性质打开 了一个新窗口。对五夸克态的形成机制和内部结构的研究有可能 使我们对强相互作用的理解提高到一个新的层次
“需求牵引、突破瓶颈”典型案例 数学: 内爆多介质多物理过程计算方法 内爆过程是爆轰物理的重要过程,涉及高温高压极端条件下 的多种复杂化学、物理过程和多介质大变形运动,其中爆炸、冲 击、辐射输运核反应等过程数学物理模型和相关参数极为复杂 而多介质大变形、不稳定性与湍流混合对计算方法提出挑战, 般的算法或软件不能满足爆轰研究的要求。我国学者针对多种物 理性质差别极大的轻重介质大变形运动界面及后期界面两侧介 质发生混合、具有强间断系数和强刚性的三维输运方程、多尺度 的三维可压缩流和输运方程等问题,发展了自适应算法、移动网 格法、拉氏方法、ALE方法、中子输运、辐射输运算法等众多具 有针对性的算法,发展了一批涉及多物理多过程的计算软件,有 效支撑了国家重大需求。 力学: 航天器系统动力学机理认知、设计调控及其应用 现代工程技术不断催生新的动态系统,而系统自身日趋复杂 服役环境日趋苛刻,呈现突出的非线性、不确定性、多场耦合、 多尺度、时滞传输等特征。我国学者瞄准新型飞行器、大型柔性 空间可展结构、柔性雷达等航天器系统中的关键科学问题,提出 了系统反馈时滞新理论方法,揭示了反馈时滞、弹性约束、迟滞 阻尼等因素引起的非线性动力学规律;提出了斜碰撞振动分析新
“需求牵引、突破瓶颈”典型案例 数学: 内爆多介质多物理过程计算方法 内爆过程是爆轰物理的重要过程,涉及高温高压极端条件下 的多种复杂化学、物理过程和多介质大变形运动,其中爆炸、冲 击、辐射输运核反应等过程数学物理模型和相关参数极为复杂, 而多介质大变形、不稳定性与湍流混合对计算方法提出挑战,一 般的算法或软件不能满足爆轰研究的要求。我国学者针对多种物 理性质差别极大的轻重介质大变形运动界面及后期界面两侧介 质发生混合、具有强间断系数和强刚性的三维输运方程、多尺度 的三维可压缩流和输运方程等问题,发展了自适应算法、移动网 格法、拉氏方法、ALE 方法、中子输运、辐射输运算法等众多具 有针对性的算法,发展了一批涉及多物理多过程的计算软件,有 效支撑了国家重大需求。 力学: 航天器系统动力学机理认知、设计调控及其应用 现代工程技术不断催生新的动态系统,而系统自身日趋复杂, 服役环境日趋苛刻,呈现突出的非线性、不确定性、多场耦合、 多尺度、时滞传输等特征。我国学者瞄准新型飞行器、大型柔性 空间可展结构、柔性雷达等航天器系统中的关键科学问题,提出 了系统反馈时滞新理论方法,揭示了反馈时滞、弹性约束、迟滞 阻尼等因素引起的非线性动力学规律;提出了斜碰撞振动分析新
理论,揭示了新碰撞振动及分岔机理;提出了碰撞隔振系统的非 线性动力学设计方法,解决了多种飞行器研制中的振动控制问题 提出了高维多柔体动力学建模与计算新理论与方法,解决了复杂 柔性空间可展结构的动特性设计问题。上述理论与方法突破了多 项技术瓶颈,为我国航天器系统的创新发展提供了技术支撑 天文: 地球同步轨道区域物体的运动特征研究与观测 地球同步轨道是稀缺资源,是可利用的重要区域,其附近物 体的分布规律、轨道长期演化特征以及观测处理复杂,这一区域 物体的数量不断增加,给航天活动的顺利丹展带来了很大的困难。 我国学者利用基本天文学方法,建立了扩展化理想共振模型,从 理论上揭示出同步轨道物体的双平动运动特征,给出了五种运动 特征的分类判据,实现子利用一组轨道数据直接判定非受控物体 的运动特征;得到倾角定量变化范围、轨道面参数相关性以及星 下点经纬度变化相关性的解析表达式,揭示了同步轨道区域非受 控物体纬度方向变化区间和演化分布规律,将同步轨道区域物体 搜索效提高1倍;克服无先验信息、密集星场等问题,建立了 实时、高效的多物体检测方法,获得了高精度的光学测量数据, 提高了定轨预报精度。通过建立集运动特征理论研究、观测方法、 物体检测、轨道识别与精密预报于一体的、可靠高效的体系,显 著提升了同步轨道区域物体的发现、分类、轨道识别以及精密预 报能力,已在空间事件分析、碰撞预警以及减缓策略硏究等航天 活动中得到应用
理论,揭示了新碰撞振动及分岔机理;提出了碰撞隔振系统的非 线性动力学设计方法,解决了多种飞行器研制中的振动控制问题; 提出了高维多柔体动力学建模与计算新理论与方法,解决了复杂 柔性空间可展结构的动特性设计问题。上述理论与方法突破了多 项技术瓶颈,为我国航天器系统的创新发展提供了技术支撑。 天文: 地球同步轨道区域物体的运动特征研究与观测 地球同步轨道是稀缺资源,是可利用的重要区域,其附近物 体的分布规律、轨道长期演化特征以及观测处理复杂,这一区域 物体的数量不断增加,给航天活动的顺利开展带来了很大的困难。 我国学者利用基本天文学方法,建立了扩展化理想共振模型,从 理论上揭示出同步轨道物体的双平动运动特征,给出了五种运动 特征的分类判据,实现了利用一组轨道数据直接判定非受控物体 的运动特征;得到倾角定量变化范围、轨道面参数相关性以及星 下点经纬度变化相关性的解析表达式,揭示了同步轨道区域非受 控物体纬度方向变化区间和演化分布规律,将同步轨道区域物体 搜索效率提高 1 倍;克服无先验信息、密集星场等问题,建立了 实时、高效的多物体检测方法,获得了高精度的光学测量数据, 提高了定轨预报精度。通过建立集运动特征理论研究、观测方法、 物体检测、轨道识别与精密预报于一体的、可靠高效的体系,显 著提升了同步轨道区域物体的发现、分类、轨道识别以及精密预 报能力,已在空间事件分析、碰撞预警以及减缓策略研究等航天 活动中得到应用