第一单元分数乘法教材分析 教学内容 与实验教材的主要区别突出强调分数乘法意义的两种形式,增加例2,作为教学“求一个数 的几分之几是多少,用乘法计算”的铺垫。解决“求一个数的几分之几是多少”的实际问题 不单独编排,而是结合分数乘法的意义、计算进行教学。增加分数与小数的乘法。增加连续 求一个数的几分之几的实际问题。求比一个数多(或少)几分之几的实际问题由两个例题缩 减为一个。“倒数的认识”由“分数乘法”单元移到“分数除法”单元。 本单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百 分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的 让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排 定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生 应用数学的意识和能力。根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的 内容单独安排。即把解决“求一个数的几分之几是多少”和稍复杂的求“比一个数多或者少 的几分之几是多少”这一类问题组成”解决问题”一个小节,通过教学使学生理解这类问题 的数量关系,掌握解题思路 与整数、小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学 分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈 现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操 作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间 教学目标: 理解分数乘法的算理并掌握分数乘法的计算方法,会进行分数乘法计算 2.理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。 3.使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少和求比一个 数多(或少)几分之几的实际问题。 教学重点: 1.理解分数乘法的意义和算理,掌握分数乘法的计算方法,会进行分数乘法计算 2.会解答求一个数的几分之几是多少和求比一个数多(或少)几分之几的实际问题。 3、会灵活选择简便算法进行分数计算。 教学难点 1.充分借助学生已有知识基础,通过观察、实验、操作、推理等探索性与挑战性的活动,去 理解分数乘分数的算理,同时培养学生的观察、动手、分析和推理等能力。 2理解分数乘法的意义,根据分数乘法的意义去解决问题。 教学建议: 1.在已有知识的基础上,帮助学生自主构建新的知识 本单元内容与学生已有知识有密切的联系。如,分数乘法计算对于学生而言是新的内容,它 的计算方法与整数、小数的计算方法有很大区别。但它的学习与整数乘法和分数的意义、性 质有紧密联系。分数乘法就是从整数乘法的意义导入分数乘整数,再扩展到分数乘分数。再 如分数乘分数的算理及解决求一个数的几分之几是多少的问题都与分数乘法的意义紧密联 系,特别是对单位”1”的理解。又如,分数乘法的计算,还要用到约分的知识 2.让学生在现实情景中学习计算。 把计算与应用紧密结合,是新课程的要求和本套教材的特点。教学中教师应结合教材提供的 实例,也可以选择学生身边的事例,有条件的地方也可运用多媒体手段,创设现实情景,提 出数学问题,理解分数乘法的意义,学习分数乘法计算。同时注意在练习中安排应用分数乘 法的意义及计算解决实际问题或学生身边的问题,体会计算是解决实际问题的需要,同时培 养学生应用数学的意识和综合运用知识解决问题的能力
1 第一单元分数乘法教材分析 教学内容: 与实验教材的主要区别突出强调分数乘法意义的两种形式,增加例 2,作为教学“求一个数 的几分之几是多少,用乘法计算”的铺垫。解决“求一个数的几分之几是多少”的实际问题 不单独编排,而是结合分数乘法的意义、计算进行教学。增加分数与小数的乘法。增加连续 求一个数的几分之几的实际问题。求比一个数多(或少)几分之几的实际问题由两个例题缩 减为一个。“倒数的认识”由“分数乘法”单元移到“分数除法”单元。 本单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百 分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的 让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排 一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生 应用数学的意识和能力。根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的 内容单独安排。即把解决“求一个数的几分之几是多少”和稍复杂的求“比一个数多或者少 的几分之几是多少”这一类问题组成”解决问题”一个小节,通过教学使学生理解这类问题 的数量关系,掌握解题思路。 与整数、小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学 分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈 现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操 作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。 教学目标: 1. 理解分数乘法的算理并掌握分数乘法的计算方法,会进行分数乘法计算。 2. 理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。 3. 使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少和求比一个 数多(或少)几分之几的实际问题。 教学重点: 1. 理解分数乘法的意义和算理, 掌握分数乘法的计算方法,会进行分数乘法计算。 2. 会解答求一个数的几分之几是多少和求比一个数多(或少)几分之几的实际问题。 3、会灵活选择简便算法进行分数计算。 教学难点: 1.充分借助学生已有知识基础,通过观察、实验、操作、推理等探索性与挑战性的活动,去 理解分数乘分数的算理,同时培养学生的观察、动手、分析和推理等能力。 2.理解分数乘法的意义,根据分数乘法的意义去解决问题。 教学建议: 1. 在已有知识的基础上,帮助学生自主构建新的知识。 本单元内容与学生已有知识有密切的联系。如,分数乘法计算对于学生而言是新的内容,它 的计算方法与整数、小数的计算方法有很大区别。但它的学习与整数乘法和分数的意义、性 质有紧密联系。分数乘法就是从整数乘法的意义导入分数乘整数,再扩展到分数乘分数。再 如分数乘分数的算理及解决求一个数的几分之几是多少的问题都与分数乘法的意义紧密联 系,特别是对单位”1”的理解。又如,分数乘法的计算,还要用到约分的知识。 2. 让学生在现实情景中学习计算。 把计算与应用紧密结合,是新课程的要求和本套教材的特点。教学中教师应结合教材提供的 实例,也可以选择学生身边的事例,有条件的地方也可运用多媒体手段,创设现实情景,提 出数学问题,理解分数乘法的意义,学习分数乘法计算。同时注意在练习中安排应用分数乘 法的意义及计算解决实际问题或学生身边的问题,体会计算是解决实际问题的需要,同时培 养学生应用数学的意识和综合运用知识解决问题的能力
3.改变学生学习方式,通过动手操作、自主探索和合作交流的方式学习分数乘法。在教材说 明中我们已经了解到教材简化了说理及思考过程的叙述,不出结论性的内容,主要是为了突 出自主探索与合作学习。根据这一编排意图,教学中要注意激发学生学习的积极性,为学生 提供充分开展数学活动的杋会,在观察、操作的基础上开展探索、讨论与交流,理解计算算 理,归纳计算法则,分析数量关系,寻找解决问题的思路,充分体现学生学习的主体地位 第一单元 学习内容 分数乘法(一) 第1课时课型新授 学习目标:1、知识与技能,结合具体情境,借助示意图理解分数乘整数的意义,渗透数形 结合思想。 2、过程与方法,借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计 算能力。 3、情感态度与价值观,在探索与交流活动中培养观察、推理的能力。 教学重点:理解分数乘整数的意义,掌握分数乘整数的计算法则。 教学难点:理解分数乘整数的算理 教具运用 2
2 3. 改变学生学习方式,通过动手操作、自主探索和合作交流的方式学习分数乘法。在教材说 明中我们已经了解到教材简化了说理及思考过程的叙述,不出结论性的内容,主要是为了突 出自主探索与合作学习。根据这一编排意图,教学中要注意激发学生学习的积极性,为学生 提供充分开展数学活动的机会,在观察、操作的基础上开展探索、讨论与交流,理解计算算 理,归纳计算法则,分析数量关系,寻找解决问题的思路,充分体现学生学习的主体地位。 第一单元 学习内容 分数乘法(一) 第 1 课时 课型 新授 学习目标: 1、知识与技能 ,结合具体情境,借助示意图理解分数乘整数的意义,渗透数形 结合思想。 2、过程与方法,借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计 算能力。 3、情感态度与价值观,在探索与交流活动中培养观察、推理的能力。 教学重点: 理解分数乘整数的意义,掌握分数乘整数的计算法则。 教学难点: 理解分数乘整数的算理。 教具运用
教学过程: 、创设情境,复习导入。 1、5个12是多少? 用加法算:12+12+12+12+12 用乘法算:12×5 问:12×5算式的意义是什么? 2.计算 66 101010 问:这两个算式有什么特点?应该怎样计算? 教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。同分母分数加法计 算法则是分子相加作分子,分母不变。 通过将算式: 01010 改写成乘法算式,引出课题 二、探索交流,解决问题。 分数乘整数的意义。 (1)谈话并提问:今天是小新的10岁生日。妈妈买来了一个大蛋糕。小新和爸爸、妈妈 起分享了生日蛋糕。他们每人吃个。你能提出一个数学问题吗?(预设:3个人一共吃多少 (2)提出要求:你能解决这个问题吗?请你在草稿本上解决这个问题。请你画一画,算一 算,争取让同学们看清你的想法。 引导学生看图,理解“他们每人吃ξ个”,就是把整个蛋糕看作单位“1”。把这个圆平 均分成9份,其中2份就表示一个人所吃蛋糕的大小,就是个。那么三个人一共吃的就是求3 个是多少? 追问:你们用画示意图的方法将问题分析得很清楚,那你们是怎样列式的呢?说说你的想法 预设:02卡号=232=号=3(个)表示3个连加的和是多少 ②×3=2X362 (个)也表示3个连加的和是多少 追问:不同的算式都表示“3个2连加的和是多少”由此你有什么发现吗?(预设:用乘法计 算更简便一些。) 分数乘法和整数乘法一样,也是求几个相同加数和的简便运算,所不同的是相同加数是分 (3)探究分数乘整数的计算方法 2X362 ①引导学生观察算式台×3=993(个)并提问。请你们看看这个算式,你能理解它是怎么 计算的吗? ②引导学生再次观察算式并提出问题:这个算式是先计算再约分的,你有不同的想法吗? 预设:
3 教学过程: 一、创设情境,复习导入。 1、5 个 12 是多少? 用加法算:12+12+12+12+12 用乘法算:12×5 问:12×5 算式的意义是什么? 2.计算: 问:这两个算式有什么特点?应该怎样计算? 教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。同分母分数加法计 算法则是分子相加作分子,分母不变。 通过将算式: 3 10 + 3 10 + 3 10 改写成乘法算式,引出课题。 二、探索交流,解决问题。 1、分数乘整数的意义。 (1)谈话并提问:今天是小新的 10 岁生日。妈妈买来了一个大蛋糕。小新和爸爸、妈妈 一起分享了生日蛋糕。他们每人吃2 9 个。你能提出一个数学问题吗?(预设:3 个人一共吃多少 个?) (2)提出要求:你能解决这个问题吗?请你在草稿本上解决这个问题。请你画一画,算一 算,争取让同学们看清你的想法。 引导学生看图,理解“他们每人吃2 9 个”,就是把整个蛋糕看作单位“1”。把这个圆平 均分成 9 份,其中 2 份就表示一个人所吃蛋糕的大小,就是2 9 个。那么三个人一共吃的就是求 3 个 2 9 是多少? 追问:你们用画示意图的方法将问题分析得很清楚,那你们是怎样列式的呢?说说你的想法。 预设:①2 9 + 2 9 + 2 9 = 2+2+2 9 = 6 9 = 2 3 (个)表示 3 个 2 9 连加的和是多少。 ② 2 9 ×3= 2X3 9 = 6 9 = 2 3 (个)也表示 3 个 2 9 连加的和是多少。 追问:不同的算式都表示“3 个 2 9 连加的和是多少”由此你有什么发现吗?(预设:用乘法计 算更简便一些。) 分数乘法和整数乘法一样,也是求几个相同加数和的简便运算,所不同的是相同加数是分 数。 (3) 探究分数乘整数的计算方法。 ①引导学生观察算式2 9 ×3= 2X3 9 = 6 9 = 2 3 (个)并提问。请你们看看这个算式,你能理解它是怎么 计算的吗? ②引导学生再次观察算式并提出问题:这个算式是先计算再约分的,你有不同的想法吗? 预设:
引导学生对比观察这几个算式并提出问题:通过比较算式你有什么发现? 小结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(分母与整数能约分的先约分再 计算) (4)小练习。 (1)计算;×4 (2)教材第2页“做一做”第1题。 2、借助情境理解整数乘分数的意义 1桶水有12L。3桶共多少L?桶是多少L?桶是多少L? (1)理解题意,明确题中的数量关系:单位量×数量=总量 (2)根据题意列出算式: 3桶水共多少L?12×3 桶是多少L?12× 4桶是多少L212×4 (3)探究每道算式的意义 12×3表示求3个12L,也就是求12L的3倍是多少。 是一半,12×,表示12L的一半,也就是求12L的是多少 12×表示求12L的是多少 发现:一个数乘分数表示的是求这个数的几分之几是多少 (4)解决问题。 (5)小练习:×6= 12 10 观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与约分,为什么只能将 整数与分数的分母约分。 集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与整数约分的错误 方法,让学生辨析 三、巩固应用,内化提高。 1、1)、教材第2页“做一做”。 2)、教材第5页第3题 1、计算。 ×42 32 9×7 3、列式计算 (1)12个了相加的和是多少?
4 1 1 2 9 ×3= 9 23 = 2 3 或 2 9 ×3= 2 9 ×3= 2 3 3 3 引导学生对比观察这几个算式并提出问题:通过比较算式你有什么发现? 小结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(分母与整数能约分的先约分再 计算) (4)小练习。 (1)计算 1 12 ×4 (2)教材第 2 页“做一做”第 1 题。 2、借助情境理解整数乘分数的意义。 1 桶水有 12L。3 桶共多少 L? 1 2 桶是多少 L? 1 4 桶是多少 L? (1)理解题意,明确题中的数量关系:单位量×数量=总量 (2)根据题意列出算式: 3 桶水共多少 L?12×3 1 2 桶是多少 L?12× 1 2 1 4 桶是多少 L?12× 1 4 (3)探究每道算式的意义 12×3 表示求 3 个 12L,也就是求 12L 的 3 倍是多少。 1 2 是一半,12× 1 2 表示 12L 的一半,也就是求 12L 的 1 2 是多少。 12× 1 4 表示求 12L 的 1 4 是多少。 发现:一个数乘分数表示的是求这个数的几分之几是多少。 (4)解决问题。 (5)小练习:2 9 ×6= 12× 3 4 = 3 10 ×4= 观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与约分,为什么只能将 整数与分数的分母约分。 集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与整数约分的错误 方法,让学生辨析。 三、巩固应用,内化提高。 1、 1)、教材第 2 页“做一做”。 2)、教材第 5 页第 3 题 2、 1、计算。 42 42 17 16 15 32 9 7 6 5 3、列式计算 (1)12 个 8 7 相加的和是多少?
(2)kg的6倍是多少kg? (3)一块长方形的铁皮,长是6分米,宽是分米,这块铁皮的面积是多少平方分米? 四、回顾整理,反思提升 说说这节课的收获? 学习内容 分数乘分数(二) 第课时课型新授 学习目标:1、知识与技能理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数 乘分数的简便计算。 过程与方法通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力 3、情感态度与价值观通过分数乘分数的应用的广泛事例,对学生进行学习目的性教 育,激发学生学习动机和兴趣 教学重点:理解一个数乘分数的意义,掌握其计算法则。 教学难点:理解一个数乘分数的意义。 教具运用:课件、每个学生准备一张长15厘米,宽10厘米的长方形纸。 教学过程 、创设情境,引入新课。 1、创设情境:李伯伯家有一块。公顷的地。种土豆的面积占这块地的三,种玉米的面积 5 根据题目所给信息,你能提出什么问题? 预设:种土豆的面积是多少公顷?种玉米的面积是多少公顷? (1)理解题意:这块地共有公顷,种士豆的面积占这块地的,应把这块地的面积看 作单位“1”。求种土豆的面积就是求。公顷的产是多少?用乘法计算,列式为× 2、揭示课题:请你观察。×这个算式,它有什么特点? 板书课题:分数乘分数 、探索交流,解决问题。 (一)、操作探究算理 1、提问: 究竟等于多少呢 2、提出操作要求:这张纸代表面积是1公顷菜地。请你们小组合作用量一量、分一分、 涂一涂的方法,说明。 510
5 (2) 9 5 kg 的 6 倍是多少 kg? (3)一块长方形的铁皮,长是 6 分米,宽是 12 11 分米,这块铁皮的面积是多少平方分米? 四、回顾整理,反思提升 说说这节课的收获? 学习内容 分数乘分数(二) 第 课时 课型 新 授 学习目标:1、 知识与技能 理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数 乘分数的简便计算。 2、过程与方法 通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。 3、情感态度与价值观 通过分数乘分数的应用的广泛事例,对学生进行学习目的性教 育,激发学生学习动机和兴趣。 教学重点: 理解一个数乘分数的意义,掌握其计算法则。 教学难点: 理解一个数乘分数的意义。 教具运用: 课件、每个学生准备一张长 15 厘米,宽 10 厘米的长方形纸。 教学过程 一、创设情境,引入新课。 1、创设情境:李伯伯家有一块1 2 公顷的地。种土豆的面积占这块地的1 5 ,种玉米的面积 占 3 5 . 根据题目所给信息,你能提出什么问题? 预设:种土豆的面积是多少公顷? 种玉米的面积是多少公顷? (1)理解题意:这块地共有1 2 公顷,种土豆的面积占这块地的1 5 ,应把这块地的面积看 作单位“1”。求种土豆的面积就是求1 2 公顷的1 5 是多少?用乘法计算,列式为1 2 × 1 5 2、揭示课题:请你观察1 2 × 1 5 这个算式,它有什么特点? 板书课题:分数乘分数 二、探索交流,解决问题。 (一)、操作探究算理。 1、提问:1 2 × 1 5 究竟等于多少呢? 2、提出操作要求:这张纸代表面积是 1 公顷菜地。请你们小组合作用量一量、分一分、 涂一涂的方法,说明1 2 × 1 5 = 1 10
3、学生动手操作,教师巡视。 4、小组汇报研究成果。 先把整张纸对折,纸就被平均分成两份,每一份是这张纸的,再把这♂部分平均分成 5份,涂出其中的1份,这1份就占整张纸的。说明。 5、结合课件演示进行归纳 用课件演示涂色过程:我们先把这张纸平均分成2份,1份是这张纸的六,又把这六平 均分成5份,也就是把这张纸平均分成了2×5=10份,1份是这张纸的10。由此可以得到: 111×11 2X510(板书算式) (二)、迁移延伸,归纳法则 1、理解题意:与解决问题(1)的方法相同,种玉米的面积占这块地(。公顷)的 也是把这块地的面积看作单位“1”。求种玉米的面积就是求公顷的是多少,用乘法计算。 2、小组讨论并操作:怎样列式?涂色表示2的。怎样计算? 3、交流计算方法和思路。 预设:与刚才一样,也是把这张纸分成2×5=10份,不同的是取其中的3份,可以得到: 1 1×33 =3(板书算式) 4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗? 通过学生讨论交流得到:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分 母 巩固应用,内化提高 1、教材第4页“做一做”的第1、2题。 2、4/9的1/3是(),3/4的1/5()。 3、一块地是4/5公顷,这块地的1/7是 )公顷 4、一堆水泥重15/16吨,用去3/7,用去()吨,还乘下总数的( 5、1千克面条3/2元,王大妈买了7/10千克面条,共花了()元 6、一个长方形的宽是5/18米,长是宽的4倍,这个长方形的面积是()平方米。 四、回顾整理,反思提升 说说这节课的收获?
6 3、学生动手操作,教师巡视。 4、小组汇报研究成果。 先把整张纸对折,纸就被平均分成两份,每一份是这张纸的1 2 ,再把这1 2 部分平均分成 5 份,涂出其中的 1 份,这 1 份就占整张纸的 1 10 。说明1 2 × 1 5 = 1 10 。 5、结合课件演示进行归纳。 用课件演示涂色过程:我们先把这张纸平均分成 2 份,1 份是这张纸的1 2 ,又把这1 2 平 均分成 5 份,也就是把这张纸平均分成了 2×5=10 份,1 份是这张纸的 1 10 。由此可以得到: 1 2 × 1 5 = 2 5 1 1 = 1 10 (板书算式) (二)、迁移延伸,归纳法则。 1、理解题意:与解决问题(1)的方法相同,种玉米的面积占这块地(1 2 公顷)的3 5 , 也是把这块地的面积看作单位“1”。求种玉米的面积就是求1 2 公顷的3 5 是多少,用乘法计算。 2、小组讨论并操作:怎样列式?涂色表示1 2 的 3 5 。怎样计算? 3、交流计算方法和思路。 预设:与刚才一样,也是把这张纸分成 2×5=10 份,不同的是取其中的 3 份,可以得到: 10 3 2 5 1 3 5 3 2 1 = = (板书算式) 4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗? 5、通过学生讨论交流得到:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分 母。 三、巩固应用,内化提高。 1、教材第 4 页“做一做”的第 1、2 题。 2、4/9 的 1/3 是( ),3/4 的 1/5( )。 3、一块地是 4/5 公顷,这块地的 1/7 是( )公顷。 4、一堆水泥重 15/16 吨,用去 3/7,用去( )吨,还乘下总数的( )。 5、1 千克面条 3/2 元,王大妈买了 7/10 千克面条,共花了( )元。 6、一个长方形的宽是 5/18 米,长是宽的 4 倍,这个长方形的面积是( )平方米。 四、回顾整理,反思提升 说说这节课的收获?
学习内容 分数乘分数(三) 第课时课型新授 学习目标:1、知识与技能掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法 计算,提高学生计算的能力 2、过程与方法能解答生活中简单的分数乘法问题,了解分数乘法在现实生活中的作 用 3、情感态度与价值观经历分数乘分数计算过程中的约分方法,感受成功的喜悦。 教学重点:掌握分数乘法计算过程中的约分方法。 教学难点:熟练掌握约分方法,提高计算的能力 教具运用 教学过程 复习导入 1、算一算 ×30 12× 交流时让学生说一说:(1)分数乘整数的约分方法。(2)分数乘分数的计算方法 二、探索交流,解决问题。 1、出示例题4:无脊椎动物中游泳最快的是乌贼,它的速度是千米/分 2、解决问题一:李叔叔的游泳速度是乌贼的4。李叔叔每分钟游多少千米? (1)阅读理解。学生阅读题目,理解题意。组织交流对题意的理解,得出: ①乌贼的速度是一千米/分。 ②李叔叔的游泳速度是一千米/分的 (2)列式解答。让学生根据已掌握的计算方法独立解答,交流解答过程。师根据学生 回答板书: 949×436=2(km) 104510×454502 (3)启发思考。 在分数乘整数时,我们在计算过程中先约分,可以使计算简便。在这里,我们是否也可 以进行先约分呢?该怎样进行约分呢? 学生独立思考,尝试计算。 (4)交流讨论 组织全班交流,通过交流得出:分数乘分数,为了计算简便,可以先约分再乘。约分时 分子的两个因数和分母的两个因数进行约分,即:
7 学习内容 分数乘分数 (三) 第 课时 课型 新 授 学习目标:1、 知识与技能 掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法 计算,提高学生计算的能力。 2、过程与方法 能解答生活中简单的分数乘法问题,了解分数乘法在现实生活中的作 用。 3、情感态度与价值观 经历分数乘分数计算过程中的约分方法,感受成功的喜悦。 教学重点: 掌握分数乘法计算过程中的约分方法。 教学难点: 熟练掌握约分方法,提高计算的能力。 教具运用: 教学过程: 一、复习导入 1、算一算 5 3 ×30= 12× 3 2 = 3 1 5 2 = 4 3 8 7 = 交流时让学生说一说:(1)分数乘整数的约分方法。(2)分数乘分数的计算方法。 二、探索交流,解决问题。 1、出示例题 4:无脊椎动物中游泳最快的是乌贼,它的速度是 10 9 千米/分。 2、解决问题一:李叔叔的游泳速度是乌贼的 45 4 。李叔叔每分钟游多少千米? (1)阅读理解。学生阅读题目,理解题意。组织交流对题意的理解,得出: ①乌贼的速度是 10 9 千米/分。 ②李叔叔的游泳速度是 10 9 千米/分的 45 4 。 (2)列式解答。 让学生根据已掌握的计算方法独立解答,交流解答过程。师根据学生 回答板书: 25 2 450 36 10 45 9 4 45 4 10 9 = = = (㎞) (3)启发思考。 在分数乘整数时,我们在计算过程中先约分,可以使计算简便。在这里,我们是否也可 以进行先约分呢?该怎样进行约分呢? 学生独立思考,尝试计算。 (4)交流讨论。 组织全班交流,通过交流得出:分数乘分数,为了计算简便,可以先约分再乘。约分时, 分子的两个因数和分母的两个因数进行约分,即:
(km) 1045 024 3、解决问题二:乌贼30分钟可以游多少千米? (1)学生独立解答,约分:9×30=9×30=27(km) (2)教师指导:分数乘法也可以这样直接约分。板书:9×30=9×30=27(k如m) 强调:分数和整数相乘,整数可以和分数的分母进行约分。 4、试一试。 10 还可以怎样进行约分呢?(强调:分数和分数相乘,可以采用分子和分母交约分。) 5、小结。在分数乘法计算过程中,能约分的,先约分再乘,这样可以使计算简便。 、巩固应用,内化提高。 1、教材第5页“做一做”第1题。(先让学生独立练习,再组织学生交流汇报,汇报时 重点交流约分的方法。) 2、教材第5页“做一做”第2题。(学生阅读题目,理解题意,学生独立计算,最后组 织交流。) 3、教材第5页“做一做”第3题, 4、教材第6页第7题 5、教材第6页第9 四、回顾整理,反思提升 说说这节课的收获? 学习内容 小数乘分数 第课时课型新授课 学习目标:1、知识与技能在解决问题的过程中学习并掌握小数乘分数的计算方法。 2、过程与方法经历小数乘分数的计算方法的探究过程。 3、情感态度与价值观体会算法多样化的数学思想,提高计算能力 教学重点:掌握小数乘分数的计算方法。 教学难点:灵活选择不同的计算方法,熟练地进行小数乘分数的计算。 教具运用 教学过程: 、创设情境,复习导入 1、计算下面各题。 54 15 21×= 交流时让学生说一说计算方法和计算过程中的约分方法
8 25 2 10 45 9 4 45 4 10 9 = = (㎞) 3、解决问题二:乌贼 30 分钟可以游多少千米? (1)学生独立解答,约分: 27 10 9 30 30 10 9 = = (㎞) (2)教师指导:分数乘法也可以这样直接约分。板书: 30 27 10 9 30 10 9 = = (㎞) 强调:分数和整数相乘,整数可以和分数的分母进行约分。 4、试一试。 45 4 10 9 还可以怎样进行约分呢?(强调:分数和分数相乘,可以采用分子和分母交约分。) 5、小结。在分数乘法计算过程中,能约分的,先约分再乘,这样可以使计算简便。 三、巩固应用,内化提高。 1、教材第 5 页“做一做”第 1 题。(先让学生独立练习,再组织学生交流汇报,汇报时 重点交流约分的方法。) 2、教材第 5 页“做一做”第 2 题。(学生阅读题目,理解题意,学生独立计算,最后组 织交流。) 3、教材第 5 页“做一做”第 3 题。 4、教材第 6 页第 7 题。 5、教材第 6 页第 9 题。 四、回顾整理,反思提升 说说这节课的收获? 学习内容 小数乘分数 第 课时 课型 新授课 学习目标:1、 知识与技能 在解决问题的过程中学习并掌握小数乘分数的计算方法。 2、过程与方法 经历小数乘分数的计算方法的探究过程。 3、情感态度与价值观 体会算法多样化的数学思想,提高计算能力。 教学重点: 掌握小数乘分数的计算方法。 教学难点: 灵活选择不同的计算方法,熟练地进行小数乘分数的计算。 教具运用: 教学过程: 一、创设情境,复习导入。 1、计算下面各题。 15 5 3 = 3 2 21 = = 3 1 5 3 5 4 8 5 = 交流时让学生说一说计算方法和计算过程中的约分方法
2、把下面的小数化成分数,分数化成小数。 1.2 0.4 5 让学生说一说怎样将一个小数化成分数? 二、探索交流,解决问题。 1、出示例题5:松鼠的尾巴长度约占身体长度的。松鼠欢欢的身体长2.1分米,松鼠 乐乐的身体长2.4分米。 (1)学生阅读题目,理解图中的信息。 (2)组织交流。提问:大家从图中收集到哪些信息? 2、解决问题一。 (1)出示问题:松鼠欢欢的尾巴有多长? (2)学生独立思考,列出算式:2.1×,并说说是怎么想的? 引导观察,这个算式和我们前面学习的分数乘法有什么不同? (3)探讨小数乘分数的计算方法 提问:小数乘分数,可以怎样进行计算呢?想一想,试一试 学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把二化成小数 汇报交流计算方法,教师结合交流情况进行板书。 小数化成分数:2.1× 321363 (分米) 分数化成小数:2.1×=2.1×0.75=1.575(分米) 3、解决问题二。 (1)出示问题:松鼠乐乐的尾巴有多长? (2)学生独立解答。 组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法 学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数 乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗? 当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进 行板书 小数和分母约分:24×2=24×=1.8(分米) 4、观察比较,回顾思考。 提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组 交流讨论,是后进行全班交流。(三种方法中,小数化成分数的方法具有普遍性,适用于所 有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行
9 2、把下面的小数化成分数,分数化成小数。 1.2 0.4 3.5 1.25 8 5 5 4 4 1 让学生说一说怎样将一个小数化成分数? 二、探索交流,解决问题。 1、出示例题 5:松鼠的尾巴长度约占身体长度的 4 3 。松鼠欢欢的身体长 2.1 分米,松鼠 乐乐的身体长 2.4 分米。 (1)学生阅读题目,理解图中的信息。 (2)组织交流。提问:大家从图中收集到哪些信息? 2、解决问题一。 (1)出示问题:松鼠欢欢的尾巴有多长? (2)学生独立思考,列出算式: 4 3 2.1 ,并说说是怎么想的? 引导观察,这个算式和我们前面学习的分数乘法有什么不同? (3)探讨小数乘分数的计算方法。 提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。 学生独立思考,尝试计算。组织交流,得出可以把 2.1 化成分数,也可以把 4 3 化成小数。 汇报交流计算方法,教师结合交流情况进行板书。 小数化成分数: 4 3 2.1 = 4 3 10 21 = 40 63 (分米) 分数化成小数: 4 3 2.1 =2.1×0.75=1.575(分米) 3、解决问题二。 (1)出示问题:松鼠乐乐的尾巴有多长? (2)学生独立解答。 组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。 学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数 乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗? 当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进 行板书: 小数和分母约分: 1.8 4 3 2.4 4 3 2.4 = = (分米) 4、观察比较,回顾思考。 提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组 交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所 有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行
计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方 法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数 能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。) 三、巩固应用,内化提高。 1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为 什么选择这样的方法进行计算 2、教材第10页“练习二”第2题。 3、教材第10页“练习二”第3题 4、作业布置。 1)5/7×1.4 1.8×3/8 7/10×0.57/8×5.6 2)学校长方形花坛的长是否6.4米,宽是长的3/4,这个花坛占地面积是多少平方米? 3、一条彩带长3.2米,用去全长的17/24,还剩下多少米? 四、回顾整理,反思提升 说说这节课的收获? 学习内容分数混合运算和简便计算 第课时课型新授 学习目标知识与技能懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有 关分数混合运算的计算 过程与方法知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律 进行一些简便运算 情感态度与价值观在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能 力及思维的灵活性。 教学重点会计算分数混合运算,能利用乘法的运算定律进行简便运算。 教学难点根据题目特点,灵活地运用定律进行简便计算。 教具运用 教学过程 、创设情境,复习导入。 1、观察下面各题,说说运算顺序。 21×3+25 6×8-5×4 21×(36-14) 2、说说我们学过哪些乘法运算定律? 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 探索交流,解决问题 (一)分数混合运算 出示例题6:一个画框,长米,宽米,做这个画框要多长的木条 1、学生读题,理解题意
10 计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方 法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数 能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。) 三、巩固应用,内化提高。 1、教材第 8 页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为 什么选择这样的方法进行计算。 2、教材第 10 页“练习二”第 2 题。 3、教材第 10 页“练习二”第 3 题。 4、作业布置。 1)5/7×1.4 1.8×3/8 7/10×0.5 7/8×5.6 2)学校长方形花坛的长是否 6.4 米,宽是长的 3/4,这个花坛占地面积是多少平方米? 3、一条彩带长 3.2 米,用去全长的 17/24,还剩下多少米? 四、回顾整理,反思提升 说说这节课的收获? 学习内容 分数混合运算和简便计算 第 课时 课型 新授 学习目标 知识与技能 懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有 关分数混合运算的计算。 过程与方法 知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律 进行一些简便运算。 情感态度与价值观 在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能 力及思维的灵活性。 教学重点 会计算分数混合运算,能利用乘法的运算定律进行简便运算。 教学难点 根据题目特点,灵活地运用定律进行简便计算。 教具运用 教学过程 一、创设情境,复习导入。 1、观察下面各题,说说运算顺序。 21×3+25 6×8-5×4 21×(36-14) 2、说说我们学过哪些乘法运算定律? 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 二、探索交流,解决问题。 (一)分数混合运算 出示例题 6:一个画框,长 5 4 米,宽 2 1 米,做这个画框要多长的木条? 1、学生读题,理解题意