工程力学(C) 23) 北京理工大学理学队力学系韩斌
工程力学(C) 北京理工大学理学院力学系 韩斌 (23)
§10应力应变分析及应力应变关糸 §101应力的概念一点处的应力状态 1内力在变形体内某一截面上分布的描述 用截面法求某一截面上的内力,得出该截面上的 内力分量:F,Fs,,M截面分布内力系向截 面形心简化后的等效力系 x T 为正确描述变形,应在 该截面上的每一点,描 Mc述内力的状况。 M
§10 应力应变分析及应力应变关系 §10.1 应力的概念 一点处的应力状态 1.内力在变形体内某一截面上分布的描述 T M 用截面法求某一截面上的内力,得出该截面上的 内力分量: FN ,FS ,T,M ——截面分布内力系向截 面形心简化后的等效力系 为正确描述变形,应在 该截面上的每一点,描 述内力的状况。 y x z N F FS FR MC
在P点取面元△A,△A上分布内力合力为△F △F △在mm截面上P点处定义:45 △F o= lim A/Nmm截面上P △ △>0△A点的正应力 △Fm-m截面上P点的 MA>0△A切应力(剪应力) △F p= lm mm截面上P M4>0△A点的全应力 应力的单位:1Pa=1N/m2 IMpa=10pa 1 Gpa=10Mpa=10%Pa
A A 在P点取面元A,A上分布内力合力为 在 m-m截面上P点处定义: F FN FS F FS FN A FN A = →0 lim m-m截面上P 点的正应力 A FS A = →0 lim m-m截面上P点的 切应力(剪应力) A F p A = → 0 lim m-m截面上P 点的全应力 p 应力的单位:1Pa=1N/m2 1Mpa=106Pa 1Gpa=103Mpa=109Pa
2.变形体内某一点的应力状态应力张量的概念 正应力、切应力(或全应力)—均与过物体内部的某 点的一个截面有关 过物体内部某点p的所有截面上的应力分 量的总体,称为变形体在该点的应力状态 描述变形体内部某点的应力状态,应用二阶张量描述
2. 变形体内某一点的应力状态——应力张量的概念 正应力、切应力(或全应力)——均与过物体内部的某 一点的一个截面有关 过物体内部某点 p的所有截面上的应力分 量的总体,称为变形体在该点的应力状态 描述变形体内部某点的应力状态,应用二阶张量描述
§102应力张量的表示方法(分量表示法) 1.单元体的概念 变形体内某点处取出的边长无限小的体积微元 在直角坐标系下,单元体为无限小正六面体 单元体是变形体 的最基本模型 单元体的三对表面: 正面:外法向与坐标轴同向 负面:外法向与坐标轴反向x
§10.2应力张量的表示方法(分量表示法) 1.单元体的概念 变形体内某点处取出的边长无限小的体积微元 在直角坐标系下,单元体为无限小正六面体 x y z x y z 单元体的三对表面: 正面:外法向与坐标轴同向 负面:外法向与坐标轴反向 单元体是变形体 的最基本模型
2应力张量的表示方法 单元体每个表面上,都有该点在该截面上的应力 矢量(全应力),可分解为三个分量 每对表面上的应力矢量互为反作用力,共9个分量 各应力分量的记法 Ox……-该分量的指向 所在面的法向 x两脚标相同—正应力 两脚标不同—切应力
2.应力张量的表示方法 单元体每个表面上,都有该点在该截面上的应力 矢量(全应力),可分解为三个分量 每对表面上的应力矢量互为反作用力,共9个分量 x y z x y z 各应力分量的记法 xy 该分量的指向 所在面的法向 xy xz xx yy yz yx zy zz zx zy zz zx yy yz yx xy xz xx 两脚标相同——正应力 两脚标不同——切应力
故应力张量的分量表示为: x y 或G y D 若记x=1y=2,x=3,则 或 21 22 31 32 33
故应力张量的分量表示为: = z x z y z z yx yy yz xx xy xz ~ = z x z y z yx y yz x xy xz ~ 或 = z x z y z yx y yz x xy xz ~ 或 若记x=1,y=2,z=3,则 = 31 32 33 21 22 23 11 12 13 ~
3元体的平衡条件 以单元体为分离体过其形心C作xC还轴: ∑M2=0,∑Mn=0,∑Mn=0 切应力互等定理 故应力张量为二阶对称张量 9个分量中,只有6个独立分量!
3.单元体的平衡条件 x y z xy xz xx yy yz yx zy zz zx xC yC zC 以单元体为分离体,过其形心C作xC,yC,zC轴: = 0, = 0, = 0 C C C Mz My Mx zy yz = xy yx = xz zx = ij ji 切应力互等定理 = 故应力张量为二阶对称张量 9个分量中,只有6个独立分量!
§103平面应力状态分析 若某点的单元体应力状态满足: 9个应力分量有些为零,不为零的应力分量作用线都在 同一平面内称为平面应力状态或二向应力状态 可简化为平面单元体
§10.3 平面应力状态分析 若某点的单元体应力状态满足: 9个应力分量有些为零,不为零的应力分量作用线都在 同一平面内——称为平面应力状态或二向应力状态 x y z xy y yx x yx y xy x 可简化为平面单元体: x y xy y yx x yx y xy x
例如当物体的表面不受力时在表面 取出的单元体 例如外力作用在板平面内的薄板内任意点 取出的单元体
例如当物体的表面不受力时在表面 取出的单元体 例如外力作用在板平面内的薄板内任意点 取出的单元体