相关文档

論展布在無限域上具弱奇性核積分算子的全連續性

本文證明了在無限域Ω上,具條件(K)的核:K(s,t)在Ω×Ω上可測,且
$\begin{array}{l}(i)k(s,t) = O(\frac{1}{{n - \delta }}),r = {\rm{||s - t}}|| \to ,\delta > 0\\s = ({s_1},{s_2}, \ldots \ldots {s_n}),t = ({t_1},{t_2}, \ldots \ldots {t_n})\\(ii)K(s,t) = O(\frac{1}{{{p^n} + \alpha }}),\rho = \sqrt {||s|{|^2} + ||t|{|^2}} \to \infty ,\alpha > o,\end{array}$
所確定的積分算子是由L2(Ω)映入L2(Ω)的全連續算子。這裏Ω是n維歐氏空間Rn中的域,又證明在條件(K*)——條件(K)加設K(s,t)在s≠t處連續——的條件下,則是由有界連續函數空間C*(Ω)映入C*(Ω)的全連續算子。關於有限域的情形是有ΜИХЛИН氏(1)所推算的,現在對於遠處的性能加設了在(ii)的限製下,就可以推到無線域情形,它的推演依靠著核K2(s,t)=$\int_\Omega ^k {(s,u)} \overline {k(t,u)} du$的性能而獲得的,主要結果是由定理1、2的證明騎著重要的作用。
团购合买资源类别:文库,文档格式:PDF,文档页数:12,文件大小:886.9KB
点击进入文档下载页(PDF格式)
共12页,试读已结束,阅读完整版请下载
点击下载(PDF格式)

浏览记录