当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《仪器分析》课程教学资源(PPT课件)第十一章 核磁共振波谱分析法 nuclear magnetic resonance spectroscopy(NMR)第1节 核磁共振基本原理 principles of nuclear magnetic resonance

一、原子核的自旋 atomic nuclear spin 二、核磁共振现象 nuclear magnetic resonance 三、核磁共振条件 condition of nuclear magnetic resonance 四、核磁共振波谱仪 nuclear magnetic resonance spectrometer
资源类别:文库,文档格式:PPT,文档大小:1.06MB,文档页数:18,团购合买
点击下载完整版文档(PPT)

第十一章、原子核的自旋 核磁共振波谱 atomic nuclear spin 二、核磁共振现象 分析法 nuclear magnetic resonance 三、核磁共振条件 nuclear magnetic resonance condition of nuclear spectroscopy; NMR magnetic resonance 第一节 四、核磁共振波谱仪 核磁共振基本原理 nuclear magnetic resonance spectrometer principles of nuclear magnetic resonance 下一页 020520

02:05:20 第十一章 核磁共振波谱 分析法 一、原子核的自旋 atomic nuclear spin 二、核磁共振现象 nuclear magnetic resonance 三、核磁共振条件 condition of nuclear magnetic resonance 四、核磁共振波谱仪 nuclear magnetic resonance spectrometer 第一节 核磁共振基本原理 nuclear magnetic resonance spectroscopy; NMR principles of nuclear magnetic resonance

原子核的自旋 atomic nuclear spin 若原子核存在自旋,产生核磁矩: 自旋角动量:P=2z√(+) 核磁矩 gB√(+1) 1n=2.7927013.=0.70216 核磁子β=eh/2Mc;自旋量子数(Ⅰ)不为零的核都具有磁矩, 质量数(a)原子序数(Z)自旋量子(I) 例子 奇数 奇或偶 13 I B3,3Cl1,I=3,1O3 偶数 偶数 "C6,O3,3S16 偶数 奇数 1,2,3 1=1H1,N7,I-3,B5 020520

02:05:20 质量数(a) 原子序数(Z)自旋量子(I) 例子 奇数 奇或偶  2 5 , 2 3 , 2 1 , , 2 1 1 1 I = H 7 1 5 9 1 9 6 1 3C , F , N 8 1 7 1 7 3 5 5 1 1 , 2 5 , , , 2 3 I = B C l I = O 偶数 偶数 0 1 6 3 2 8 1 6 6 1 2C , O , S 偶数 奇数 1,2,3…… 5 1 0 7 1 4 1 2 I = 1, H , N ,I − 3, B 一、 原子核的自旋 atomic nuclear spin 若原子核存在自旋,产生核磁矩: 自旋角动量: 核磁子=eh/2M c;自旋量子数(I)不为零的核都具有磁矩, ( 1) 2 = I I + h   核 磁 矩:  = g I(I +1)   1 = 2.79270 H  13 = 0.70216 C 

讨论: 旋进轨道 (1)=0的原子核16O;12C;2s等,无自 旋,没有磁矩,不产生共振吸收 日旋轴 自旋的质子 (2)=1或I>0的原子核 F=1:2H,14N 3/2 IlB, 35C1 79Br,8l Br F5/2:17O,127 这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少; (3)I=12的原子核H,13C,19F,3P 原子核可看作核电荷均匀分布的球体,并象陀螺一样自 旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有 机化合物的主要组成元素。 020520

02:05:20 讨论: (1) I=0 的原子核 16O; 12 C; 22 S等 ,无自 旋,没有磁矩,不产生共振吸收 (2) I=1 或 I >0的原子核 I=1 :2H, 14N I=3/2: 11B, 35Cl, 79Br, 81Br I=5/2:17O, 127I 这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少; (3)I=1/2的原子核 1H, 13C, 19F, 31P 原子核可看作核电荷均匀分布的球体,并象陀螺一样自 旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有 机化合物的主要组成元素

n=/2 1 0 E12 mE-1|>m=-2 Ann F 2 m=1/2 E2=+H0 E=E2-Er=2uHo E =-1/2 020520

02:05:20 H0 m=1/2 m=-1/2 m=1 m=-1 m=0 m=2 m=1 m=0 m=-1 m=-2 I=1/2 I=1 I=2 z z z 1 P  H0 H E2=+  H0 E= E2 - E1 = 2 H0 E1=-  H0

核磁共振现象 nuclear magnetic resonance N 自旋量子数=1/2的原子核 氢核),可当作电荷均匀分 布的球体,绕自旋轴转动时, 生磁场,类似一个小磁铁。 当置于外磁场H中时,相对 M= 于外磁场,有(2H+1)种取向: 氢核(l=1/2),两种取向 (两个能级): N (1)与外磁场平行,能量低,磁量 子数m=+1/2; (2)与外磁场相反,能量高,磁量 子数m=-1/2; 020520

02:05:20 二、 核磁共振现象 nuclear magnetic resonance 自旋量子数 I=1/2的原子核 (氢核),可当作电荷均匀分 布的球体,绕自旋轴转动时, 产生磁场,类似一个小磁铁。 当置于外磁场H0中时,相对 于外磁场,有(2I+1)种取向: 氢核(I=1/2),两种取向 (两个能级): (1)与外磁场平行,能量低,磁量 子数m=+1/2; (2)与外磁场相反,能量高,磁量 子数m=-1/2;

(核磁共振现象) 两种取向不完全与外磁场平行,b=54°24和125 °36 相互作用,产生进动(拉莫进 动)进动频率vo;角速度On; 旋进轨道 b=21=y1 自旋轴 γ磁旋比;H外磁场强度; 两种进动取向不同的氢核之 自旋的因子 间的能级差: △E=山H0(磁矩) 垂 020520

02:05:20 ( 核磁共振现象) 两种取向不完全与外磁场平行,=54°24’ 和 125 °36’ 相互作用, 产生进动(拉莫进 动)进动频率 0; 角速度0; 0 = 2 0 =  H0  磁旋比; H0外磁场强度; 两种进动取向不同的氢核之 间的能级差: E= H0 (磁矩)

三、核磁共振条件 condition of nuclear magnetic resonance H H 在外磁场中,原子核能级 产生裂分,由低能级向高能 级跃迁,需要吸收能量 +△E 能级量子化。射频振荡 WV射频场 △E 线圈产生电磁波。 射频振荡线圈 对于氢核,能级差:△E=H(磁矩) 产生共振需吸收的能量:△E=H=hvo 由拉莫进动方程:0=2%=yH 共振条件:1=yH6/(2) 020520

02:05:20 三、核磁共振条件 condition of nuclear magnetic resonance 在外磁场中,原子核能级 产生裂分,由低能级向高能 级跃迁,需要吸收能量。 能级量子化。射频振荡 线圈产生电磁波。 对于氢核,能级差: E= H0 (磁矩) 产生共振需吸收的能量:E=  H0 = h 0 由拉莫进动方程:0 = 2 0 =  H0 ; 共振条件: 0 =  H0 / (2 )

共振条件 M=- (1)核有自旋(磁性核) (2)外磁场,能级裂分; M=+ (3)照射频率与外磁场的比值v/H=y/(2π) lo μ +△E 射频场 △尸 μ 射频振荡线圈 020520

02:05:20 共振条件 (1) 核有自旋(磁性核) (2)外磁场,能级裂分; (3)照射频率与外磁场的比值0 / H0 =  / (2 )

能级分布与弛豫过程 不同能级上分布的核数目可由 Boltzmann定律计算: E -E △E h ex T T T 磁场强度23488T;25°C;1的共振频率与分配比: 共振频率v=B 268×103×23488 100.00MHZ 2丌 2×3.24 6.626×10-34×100.00×106J.s.s-1 =exp 0.999984 1.38066×1023×298J.K1.K 两能级上核数目差:1.×105; 弛豫( relaxtion)高能态的核以非辐射的方式回到低能态。 饱和( saturated)低能态的核等于高能态的核 020520

02:05:20 能级分布与弛豫过程 不同能级上分布的核数目可由Boltzmann 定律计算: 磁场强度2.3488 T;25C;1H的共振频率与分配比:        = −       = −         − = − kT h kT E kT E E N N i j j i  exp exp exp 两能级上核数目差:1.610-5; 100.00MHz 2 3.24 2.68 10 2.3488 2 8 0    = B =   共振频率 0.999984 J K K J s s 1.38066 10 298 6.626 10 100.00 10 exp 1 1 2 3 3 4 6 =                  = − − − − j i N N 弛豫(relaxtion)——高能态的核以非辐射的方式回到低能态。 饱和(saturated)——低能态的核等于高能态的核

讨论: SNa al 共振条件:v0=yH0/(2兀) 2H 1t (1)对于同一种核,磁旋比y 0.10.20.30.40.50.60.70.80.9 为定值,H变,射频频率v变。 磁场强度T 低分辨核磁共振谱 (2)不同原子核,磁旋比y不同,产生共振的条件不同,需 要的磁场强度H和射频频率怀同。 (3)固定H,改变ν(扫频),不同原子核在不同频率处 发生共振(图)。也可固定v,改变H0(扫场)。扫场方式 应用较多。 氢核(HH):1.409T共振频率60MHz 2305T共振频率100MHz 磁场强度H0的单位:1高斯(GS)=104T(特拉斯) 020520

02:05:20 讨论: 共振条件: 0 =  H0 / (2 ) (1)对于同一种核,磁旋比 为定值, H0变,射频频率变。 (2)不同原子核,磁旋比不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。 (3) 固定H0 ,改变(扫频),不同原子核在不同频率处 发生共振(图)。也可固定,改变H0 (扫场)。扫场方式 应用较多。 氢核(1H): 1.409 T 共振频率 60 MHz 2.305 T 共振频率 100 MHz 磁场强度H0的单位:1高斯(GS)=10-4 T(特拉斯)

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共18页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有