工程科学学报 Chinese Journal of Engineering BaCa1zbz0g8复合钙铁矿型固体电解质性能研究 丁玉石厉英 Transport properties of BaCaNbO composite perovskite oxides DING Yu-shi,LI Ying 引用本文: 丁玉石,厉英.Ba3Ca1+xNb2,0g6复合钙钛矿型固体电解质性能研究J.工程科学学报,2021,43(8):1032-1036.doi: 10.13374.issn2095-9389.2020.12.03.003 DING Yu-shi,LI Ying.Transport properties of Ba CaNb composite perovskite oxides Chinese oural of Engineering. 2021,43(8:1032-1036.doi10.13374j.issn2095-9389.2020.12.03.003 在线阅读View online:https::/ldoi.org/10.13374j.issn2095-9389.2020.12.03.003 您可能感兴趣的其他文章 Articles you may be interested in A位掺杂Ru对sPS制备LaCO,陶瓷导电性的影响及其作为熔盐中惰性阳极的可行性 Influence of Ru doping on the conductivity of LaCrO ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis 工程科学学报.2020,42(10:1335htps:/1doi.org/10.13374.issn2095-9389.2019.12.25.005 钙钛矿太阳能电池稳定性研究进展 Research progress on the stability of perovskite solar cells 工程科学学报.2020,42(1)片:16htps:1doi.org/10.13374j.issn2095-9389.2019.06.24.006 钙钛矿电池用碘化铅的合成与性能 Synthesis and properties of lead iodide for perovskite solar cells 工程科学学报.2019,41(4:454 https:/1doi.org/10.13374.issn2095-9389.2019.04.005 卤化物钙钛矿量子点0D-2D混合维度异质结构光探测器的研究进展及挑战 Halide perovskite quantum dot based OD-2D mixed-dimensional heterostructure photodetectors:progress and challenges 工程科学学报.2019.41(3279 https::/doi.org/10.13374.issn2095-9389.2019.03.001 Fe-TiB,/AL,O,复合阴极的电解性能及元素迁移行为 Electrolytic properties and element migration behavior in a Fe-TiB,/Al,O composite cathode 工程科学学报.2019,41(8):1045 https::/oi.org10.13374j.issn2095-9389.2019.08.010 MgO对含钛烧结矿矿相结构及软熔滴落性能的影响 Effects of MgO on the mineral structure and softening-melting property of Ti-containing sinter 工程科学学报.2018.40(2:184 https::/1doi.org/10.13374j.issn2095-9389.2018.02.008
Ba3 Ca1+x Nb2x O9δ复合钙钛矿型固体电解质性能研究 丁玉石 厉英 Transport properties of Ba3 Ca1+x Nb2−x O9−δ composite perovskite oxides DING Yu-shi, LI Ying 引用本文: 丁玉石, 厉英. Ba3 Ca1+x Nb2x O9δ复合钙钛矿型固体电解质性能研究[J]. 工程科学学报, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003 DING Yu-shi, LI Ying. Transport properties of Ba3 Ca1+x Nb2x O9δ composite perovskite oxides[J]. Chinese Journal of Engineering, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003 在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2020.12.03.003 您可能感兴趣的其他文章 Articles you may be interested in A位掺杂Ru对SPS制备LaCrO3陶瓷导电性的影响及其作为熔盐中惰性阳极的可行性 Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis 工程科学学报. 2020, 42(10): 1335 https://doi.org/10.13374/j.issn2095-9389.2019.12.25.005 钙钛矿太阳能电池稳定性研究进展 Research progress on the stability of perovskite solar cells 工程科学学报. 2020, 42(1): 16 https://doi.org/10.13374/j.issn2095-9389.2019.06.24.006 钙钛矿电池用碘化铅的合成与性能 Synthesis and properties of lead iodide for perovskite solar cells 工程科学学报. 2019, 41(4): 454 https://doi.org/10.13374/j.issn2095-9389.2019.04.005 卤化物钙钛矿量子点0D-2D混合维度异质结构光探测器的研究进展及挑战 Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors:progress and challenges 工程科学学报. 2019, 41(3): 279 https://doi.org/10.13374/j.issn2095-9389.2019.03.001 Fe-TiB2 /Al2 O3复合阴极的电解性能及元素迁移行为 Electrolytic properties and element migration behavior in a Fe-TiB2 /Al2 O3 composite cathode 工程科学学报. 2019, 41(8): 1045 https://doi.org/10.13374/j.issn2095-9389.2019.08.010 MgO对含钛烧结矿矿相结构及软熔滴落性能的影响 Effects of MgO on the mineral structure and softening-melting property of Ti-containing sinter 工程科学学报. 2018, 40(2): 184 https://doi.org/10.13374/j.issn2095-9389.2018.02.008
工程科学学报.第43卷.第8期:1032-1036.2021年8月 Chinese Journal of Engineering,Vol.43,No.8:1032-1036,August 2021 https://doi.org/10.13374/j.issn2095-9389.2020.12.03.003;http://cje.ustb.edu.cn Ba3Ca1+xNb2-xOg-s复合钙钛矿型固体电解质性能研究 丁玉石2),厉 英1,2)四 1)东北大学治金学院.沈阳1108192)辽宁省治金传感器材料及技术重点实验室,沈阳110819 ☒通信作者,E-mail:liying@mail.neu.edu.cn 摘要高温质子导体固体电解质Ba3Ca1+rNb2-Og-s化学性质稳定,中低温电导率较高,具有较好的应用前景.采用固相合 成法制备得到了复合钙钛矿相的Ba3Ca1+Nb2-Og-(x=0、0.10、0.18、0.30)材料.随着Ca掺杂量的增加BaCa1+Nb2-Og-s样 品的电导率先增加后降低,x=0.18的样品电导率最高.Ba,Ca1+Nb2-Og-s材料在含氢中的电子空穴迁移数较低,当温度低于 750℃时,材料中质子导电为主:当温度达800℃后,材料中氧离子导电为主.x-0.10的样品质子迁移数最高.随着掺杂量的 增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低 关键词质子导体:钙钛矿:电导率:载流子:迁移数 分类号TF01:077 Transport properties of Ba3Ca+xNb2-Oo-s composite perovskite oxides DING Yu-shi2),LI Ying2 1)School of Metallurgy,Northeastern University,Shenyang 110819,China 2)Liaoning Key Laboratory for Metallurgical Sensor Materials and Technology,Shenyang 110819,China Corresponding author,E-mail:liying@mail.neu.edu.cn ABSTRACT ABO3-type perovskite oxides and A3B'B"2O-type composite perovskite oxides exhibit proton conduction from 200 C to 1000 C.These high-temperature proton conductors have received considerable attention due to their promise as electrolytes in fuel cells, electrolytic hydrogen production,hydrogen separation,electrochemical reactors,sensors,etc.The BaCaNb2-Os composite perovskite-type solid electrolyte has stable chemical properties and corrosion resistance to CO2 and H2O,so it can be used in long-term electrochemical devices.Protons are incorporated into Ba CaNbin a humid or hydrogen-containing atmosphere because of the reaction of H2O and oxygen vacancies in proton conductors.However,proton conductors also exhibit oxygen vacancy conduction in the high-temperature range.In addition,electron holes can be generated by an oxygen vacancy reaction with atmospheric oxygen,causing proton conductors to exhibit electron-hole conduction.Hence,more oxygen vacancies can be produced with more Ca dopant in Ba CaNb2O due to a lack of positive charge.Meanwhile,the proton and electron-hole concentrations increase with oxygen vacancies,and the conductivity of Ba CaNb2Ocan be improved.However,the crystal structure of BaCaNb2O can be changed with Cadoping,and changes in proton,oxygen vacancy,and electron-hole transport numbers,the ratio of protons,oxygen vacancies,and electron-hole conductivity to total conductivity respectively,are unknown with Cadoping,with different effects of crystal structure for protons,oxygen vacancies,and electron-hole conduction.Ba CaNbhas high conductivity in a humid atmosphere,and the proton transport number with doping amount needs to be further studied.In this work,BaCaNb2O(x-0, 0.10,0.18,and 0.30)with a composite perovskite phase was prepared using a solid-state reaction method.With the increase in Ca doping amount,the conductivity of Ba CaNbsamples first increased and then decreased,and the conductivity of the sample with x=0.18 was the highest.The electron-hole transport number of Ba;Ca+Nb2_0o under the atmosphere containing hydrogen was 收稿日期:2020-12-03 基金项目:国家自然科学基金资助项目(51774076.51834004,51704063)
Ba3Ca1+xNb2−xO9−δ 复合钙钛矿型固体电解质性能研究 丁玉石1,2),厉 英1,2) 苣 1) 东北大学冶金学院,沈阳 110819 2) 辽宁省冶金传感器材料及技术重点实验室,沈阳 110819 苣通信作者,E-mail:liying@mail.neu.edu.cn 摘 要 高温质子导体固体电解质 Ba3Ca1+xNb2−xO9−δ 化学性质稳定,中低温电导率较高,具有较好的应用前景. 采用固相合 成法制备得到了复合钙钛矿相的 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)材料. 随着 Ca 掺杂量的增加 Ba3Ca1+xNb2−xO9−δ 样 品的电导率先增加后降低,x=0.18 的样品电导率最高. Ba3Ca1+xNb2−xO9−δ 材料在含氢中的电子空穴迁移数较低,当温度低于 750 ℃ 时,材料中质子导电为主;当温度达 800 ℃ 后,材料中氧离子导电为主. x=0.10 的样品质子迁移数最高,随着掺杂量的 增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低. 关键词 质子导体;钙钛矿;电导率;载流子;迁移数 分类号 TF01;O77 Transport properties of Ba3Ca1+xNb2−xO9−δ composite perovskite oxides DING Yu-shi1,2) ,LI Ying1,2) 苣 1) School of Metallurgy, Northeastern University, Shenyang 110819, China 2) Liaoning Key Laboratory for Metallurgical Sensor Materials and Technology, Shenyang 110819, China 苣 Corresponding author, E-mail: liying@mail.neu.edu.cn ABSTRACT ABO3 -type perovskite oxides and A3B′B′′2O9 -type composite perovskite oxides exhibit proton conduction from 200 ℃ to 1000 ℃. These high-temperature proton conductors have received considerable attention due to their promise as electrolytes in fuel cells, electrolytic hydrogen production, hydrogen separation, electrochemical reactors, sensors, etc. The Ba3Ca1+xNb2−xO9−δ composite perovskite-type solid electrolyte has stable chemical properties and corrosion resistance to CO2 and H2O, so it can be used in long-term electrochemical devices. Protons are incorporated into Ba3Ca1+xNb2−xO9−δ in a humid or hydrogen-containing atmosphere because of the reaction of H2O and oxygen vacancies in proton conductors. However, proton conductors also exhibit oxygen vacancy conduction in the high-temperature range. In addition, electron holes can be generated by an oxygen vacancy reaction with atmospheric oxygen, causing proton conductors to exhibit electron-hole conduction. Hence, more oxygen vacancies can be produced with more Ca2+ dopant in Ba3Ca1+xNb2−xO9−δ due to a lack of positive charge. Meanwhile, the proton and electron-hole concentrations increase with oxygen vacancies, and the conductivity of Ba3Ca1+xNb2−xO9−δ can be improved. However, the crystal structure of Ba3Ca1+xNb2−xO9−δ can be changed with Ca2+ doping, and changes in proton, oxygen vacancy, and electron-hole transport numbers, the ratio of protons, oxygen vacancies, and electron-hole conductivity to total conductivity respectively, are unknown with Ca2+ doping, with different effects of crystal structure for protons, oxygen vacancies, and electron-hole conduction. Ba3Ca1+xNb2−xO9−δ has high conductivity in a humid atmosphere, and the proton transport number with doping amount needs to be further studied. In this work, Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) with a composite perovskite phase was prepared using a solid-state reaction method. With the increase in Ca2+ doping amount, the conductivity of Ba3Ca1+xNb2−xO9−δ samples first increased and then decreased, and the conductivity of the sample with x=0.18 was the highest. The electron-hole transport number of Ba3Ca1+xNb2−xO9−δ under the atmosphere containing hydrogen was 收稿日期: 2020−12−03 基金项目: 国家自然科学基金资助项目(51774076,51834004,51704063) 工程科学学报,第 43 卷,第 8 期:1032−1036,2021 年 8 月 Chinese Journal of Engineering, Vol. 43, No. 8: 1032−1036, August 2021 https://doi.org/10.13374/j.issn2095-9389.2020.12.03.003; http://cje.ustb.edu.cn
丁玉石等:Ba3Ca1+rNb2-Ogs复合钙钛矿型固体电解质性能研究 ·1033· relatively low.Protons were mainly conductive carriers in BaCaNb2Obelow 750 C,while BaCaNb2-Oexhibited mainly oxygen vacancy conduction at 800 C.With the increase in dopant amount,the oxygen vacancy transport number of BaCaNb2O increased gradually,while the proton transport number decreased gradually. KEY WORDS proton conductor;perovskite:conductivity;carriers;transport number 高温质子导体固体电解质可在200~1000℃ (x=0、0.10、0.18、0.30)的化学计量,采用分析天平 的中高温度段产生质子导电,在燃料电池5、 称取原料,置入玛瑙球磨罐,加入无水乙醇作为湿 电解制氢例、氢分离0山、电化学反应器2、传感 磨剂,利用行星式球磨机以300rmin的转速球 器1等领域具有良好的应用前景 磨10h;将球磨后的混合粉体烘干,分别置入二氧 复合钙钛矿型固体电解质Ba3Ca1+xNb2-Og-5 化锆坩埚,并采用箱式炉将粉体在1300℃煅烧 化学性质稳定,耐C02、H20侵蚀6-1,可应用于 10h:利用玛瑙研钵将煅烧后的粉体磨细,通过金 长期工作的电化学装置.BaCa1+xNb2-O,-s材料中 属模具将其压制成直径10mm.厚1~2mm的圆 的质子,其来源主要为气氛中的水分子20,材料 片,并采用200MPa的冷等静压将其压实:最后, 中的氧空位与气氛中的水蒸气反应产生质子,而 将Ba3Ca1+xNb2-0g-(=0、0.10、0.18、0.30)样品片 在Ba:CaNb2Og材料的Nb离子位掺杂低价的Ca2+ 在1600℃烧结10h,得到陶瓷化的样品 可以造成氧空位从而导致材料产生质子.但是 研究采用D8 ADVANCE X射线衍射仪(Bruker 材料中的氧空位也可导电,此外氧空位与气氛中 AXS)测试了烧后Ba3Ca1+xNb2-Og-=0、0.10、0.18、 的氧气反应,可生成电子空穴h,导致材料产生电 0.30)材料的XRD图.通过输力强1260A增益阻抗 子空穴导电 相位仪测试了材料在500~800℃的交流阻抗谱. Ba3Ca1+rNb2-rOg-s材料中的Ca掺杂量越大,材 2结果与讨论 料的正电荷缺失越多,表现为材料中氧空位增多.较 多的氧空位可以导致材料中产生较高的质子浓度 2.1物相分析 及电子空穴浓度,提高Ba3Ca1+xNb2-O,-s的电导率 烧结后BaCa1+xNb2-0g-=0、0.10、0.18、0.30) 但是过多的Ca掺杂也可能改变BaCa1+rNb2-Og-i 样品的XRD图,如图1所示. 的晶体结构,阻碍质子、氧空位及电子空穴导电 由图1可见,烧结后Ba3Ca+rNb2-Og-(=0、 因此,控制材料中的Ca糁杂量可控制材料的电导 0.10、0.18、0.30)样品的XRD图与Ba3Ca1.18Nb1.82Og-d 率,也可控制质子、氧空位及电子空穴的电导率占 标准卡符合,且所有样品的XRD图中未发现原料 比(载流子迁移数).Liang等a和Wang等ls]报道 衍射峰.XRD测试结果表明,实验通过高温烧结, 了Ba3Ca1.18Nb1.s2Og-s材料在含水气氛中具有较高 得到了复合钙钛矿型的材料.由XRD主峰细节图 的电导率,载流子迁移数随掺杂量的变化规律需 可见,随着Ca掺杂量的增加,材料的XRD主峰逐 要进一步研究. 渐向左移动.根据布拉格公式: 本文在目前普遍研究的Ba3Ca1.1gNb1.s2Og-s材料 2dsin6 nA (1) 的基础上,制备了不同Ca掺杂量的BaCa1+Nb2-Og- 式中:O为入射X射线和相应结晶界面的夹角; (x=0、0.10、0.18、0.30)材料,测试了材料的电导率及 1为入射X射线的波长:d为晶面间距:n为衍射级 质子、氧空位及电子空穴迁移数,分析了掺杂量对 数.在测试过程中X射线属性不变,测试结果表 电导率及各载流子迁移数的影响规律,探索出了电 明,随着Ca掺杂量的增加,材料的XRD衍射峰逐 导率及质子迁移数最高的材料,为Ba3Ca1+rNb2-Og-5 渐左移,0逐渐减小,说明参杂量的增大导致材料 的应用选择合适掺杂量提供了实验依据 的晶格逐渐增大.由于Ca2+离子半径为0.100nm, 1实验 大于Nb离子半径0.064nm,因此,掺杂后材料的 品格增大 研究利用固相合成法制备了Ba3Ca1+xNb2-xOg-s 2.2电导率分析 材料.首先将原料BaCO3(沪试,99.5%)、CaC03 研究分析Ba3Ca1+xNb2-Og-(x=0、0.10、0.18、 (沪试,99.5%)和Nb205(沪试,99.95%)分别置入200℃ 0.30)样品的交流阻抗谱得到样品的电阻.从而计 的烘箱,干燥处理10h;然后根据Ba3Ca1+xNb2-Og-s 算出材料的电导率,如图2所示
relatively low. Protons were mainly conductive carriers in Ba3Ca1+xNb2−xO9−δ below 750 ℃, while Ba3Ca1+xNb2−xO9−δ exhibited mainly oxygen vacancy conduction at 800 ℃. With the increase in dopant amount, the oxygen vacancy transport number of Ba3Ca1+xNb2−xO9−δ increased gradually, while the proton transport number decreased gradually. KEY WORDS proton conductor;perovskite;conductivity;carriers;transport number 高温质子导体固体电解质可在 200~1000 ℃ 的中高温度段产生质子导电[1−4] ,在燃料电池[5−8]、 电解制氢[9]、氢分离[10−11]、电化学反应器[12]、传感 器[13−15] 等领域具有良好的应用前景. 复合钙钛矿型固体电解质 Ba3Ca1+xNb2−xO9−δ 化学性质稳定,耐 CO2、H2O 侵蚀[16−18] ,可应用于 长期工作的电化学装置. Ba3Ca1+xNb2−xO9−δ 材料中 的质子,其来源主要为气氛中的水分子[19−20] . 材料 中的氧空位与气氛中的水蒸气反应产生质子,而 在 Ba3CaNb2O9 材料的 Nb5+离子位掺杂低价的 Ca2+ 可以造成氧空位[21] ,从而导致材料产生质子. 但是 材料中的氧空位也可导电,此外氧空位与气氛中 的氧气反应,可生成电子空穴 h · ,导致材料产生电 子空穴导电. Ba3Ca1+xNb2−xO9−δ 材料中的 Ca 掺杂量越大,材 料的正电荷缺失越多,表现为材料中氧空位增多. 较 多的氧空位可以导致材料中产生较高的质子浓度 及电子空穴浓度,提高 Ba3Ca1+xNb2−xO9−δ 的电导率. 但是过多的 Ca 掺杂也可能改变 Ba3Ca1+xNb2−xO9−δ 的晶体结构,阻碍质子、氧空位及电子空穴导电. 因此,控制材料中的 Ca 掺杂量可控制材料的电导 率,也可控制质子、氧空位及电子空穴的电导率占 比(载流子迁移数). Liang 等[22] 和 Wang 等[18] 报道 了 Ba3Ca1.18Nb1.82O9−δ 材料在含水气氛中具有较高 的电导率,载流子迁移数随掺杂量的变化规律需 要进一步研究. 本文在目前普遍研究的 Ba3Ca1.18Nb1.82O9-δ 材料 的基础上,制备了不同Ca 掺杂量的Ba3Ca1+xNb2−xO9−δ (x=0、0.10、0.18、0.30)材料,测试了材料的电导率及 质子、氧空位及电子空穴迁移数,分析了掺杂量对 电导率及各载流子迁移数的影响规律,探索出了电 导率及质子迁移数最高的材料,为 Ba3Ca1+xNb2−xO9−δ 的应用选择合适掺杂量提供了实验依据. 1 实验 研究利用固相合成法制备了 Ba3Ca1+xNb2−xO9−δ 材料. 首先将原料 BaCO3(沪试, 99.5%) 、CaCO3 (沪试,99.5%)和Nb2O5(沪试,99.95%)分别置入200 ℃ 的烘箱,干燥处理 10 h;然后根据 Ba3Ca1+xNb2−xO9−δ (x=0、0.10、0.18、0.30)的化学计量,采用分析天平 称取原料,置入玛瑙球磨罐,加入无水乙醇作为湿 磨剂,利用行星式球磨机以 300 r·min−1 的转速球 磨 10 h;将球磨后的混合粉体烘干,分别置入二氧 化锆坩埚,并采用箱式炉将粉体在 1300 ℃ 煅烧 10 h;利用玛瑙研钵将煅烧后的粉体磨细,通过金 属模具将其压制成直径 10 mm,厚 1~2 mm 的圆 片,并采用 200 MPa 的冷等静压将其压实;最后, 将 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)样品片 在 1600 ℃ 烧结 10 h,得到陶瓷化的样品. 研究采用 D8 ADVANCE X 射线衍射仪(Bruker AXS)测试了烧结后Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、 0.30)材料的 XRD 图. 通过输力强 1260A 增益阻抗 相位仪测试了材料在 500~800 ℃ 的交流阻抗谱. 2 结果与讨论 2.1 物相分析 烧结后Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30) 样品的 XRD 图,如图 1 所示. 由 图 1 可见 ,烧结 后 Ba3Ca1+xNb2−xO9−δ( x=0、 0.10、0.18、0.30)样品的XRD 图与Ba3Ca1.18Nb1.82O9−δ 标准卡符合,且所有样品的 XRD 图中未发现原料 衍射峰. XRD 测试结果表明,实验通过高温烧结, 得到了复合钙钛矿型的材料. 由 XRD 主峰细节图 可见,随着 Ca 掺杂量的增加,材料的 XRD 主峰逐 渐向左移动. 根据布拉格公式: 2dsinθ = nλ (1) 式中: θ 为入射 X 射线和相应结晶界面的夹角; λ 为入射 X 射线的波长;d 为晶面间距;n 为衍射级 数. 在测试过程中 X 射线属性不变,测试结果表 明,随着 Ca 掺杂量的增加,材料的 XRD 衍射峰逐 渐左移,θ 逐渐减小,说明掺杂量的增大导致材料 的晶格逐渐增大. 由于 Ca2+离子半径为 0.100 nm, 大于 Nb5+离子半径 0.064 nm,因此,掺杂后材料的 晶格增大. 2.2 电导率分析 研究分 析 Ba3Ca1+xNb2−xO9−δ( x=0、 0.10、 0.18、 0.30)样品的交流阻抗谱得到样品的电阻,从而计 算出材料的电导率,如图 2 所示. 丁玉石等: Ba3Ca1+xNb2−xO9−δ 复合钙钛矿型固体电解质性能研究 · 1033 ·
·1034 工程科学学报,第43卷,第8期 x=0 (n'e) x=0.10 Ba,CaL.Nb.O x=0.18 。g x=0.30 102030 4050 607080 90 2829303132 28) 28m) 图1在1600℃烧结10h后的Ba,Ca4rNb2-0g-(=0、0.10、0.18.0.30)样品的XRD图 Fig.1 XRD pattern of BaCaNbzO(x=0.10,0.18,and 0.30)specimen,sintered at 1600 C for 10 h 103 掺杂量x0.18时,材料的电导率随着Ca摻杂量的增加开 始降低,这是由于过多的参杂导致材料产生了较 %心 多的缺陷,阻碍了材料中载流子的迁移,导致其电 一3=0 ·x=0.10 导率降低 10-7 4=0.18 2.3载流子迁移数分析 -1=0.30 研究测试了Ba3Ca1+xNb2-0g-(x=0.10、0.18、 10-8L 500550 600650700750800 Temperature/℃ 0.30)样品在不同温度、不同氧分压Po,及不同水分 图2BaCa1xNb2-0g-(=0、0.10、0.18、0.30)样品的电导率随温度 压P0下的电导率(如图3所示)以计算材料中各 变化曲线 载流子迁移数 Fig.2 Temperature-dependent conductivity of Ba CaNb2_O(x=0, 由图3可见,BaCa1+rNb2-Og-5(x-0.10、0.18、 .10,0.18,and 0.30)specimen 0.30)样品的电导率随氧分压的增加逐渐增加,这 根据图2,Ba,Ca1+rNb2-0g-(x=0、0.10、0.18、 是材料中电子空穴导电导致的.根据式(4),在含 0.30)样品的电导率σ随温度的升高而升高.Ca掺 氧气氛中材料的电子空穴浓度随气氛氧分压的增 杂后Ba3Ca1+xNb2-xOg-的电导率显著提高了3~5 加逐渐增大,因此高氧分压可导致材料电导率的 个数量级,这是由于Ca掺杂导致材料产生大量的 提高. 氧空位,如式(2)所示 根据图3,材料的电导率σ与Po,呈线性关 Co CV+0 (2) 系,符合质子导体的理论电动势规律3-2,如式 (5)~(8)所示 式中,Ca为掺杂在Nb离子的Ca离子,V6为氧 PHO 空位,O为晶格中的氧离子,氧空位可诱导材料产 (5) V1+a-1 生质子、氧离子及电子空穴导电,如式(3)、(4). Vo+H20+Oǒ=20% (3) (6) a V6+02=0%+2h (4) (7) 式中,OH为与晶格氧成键的质子 由图2可见,随着材料中Ca摻杂量的增加 Ctot =CoHo +ovo+oh (8) Ba3Ca1+Nb2-0,-(x=0、0.10、0.18、0.30)样品的电 导率先增加后降低,x0.18的样品电导率最高.当 tH=oH/Ctot,to=ovg/otot,th=oh'/otot (9)
根 据 图 2, Ba3Ca1+xNb2−xO9−δ( x=0、 0.10、 0.18、 0.30)样品的电导率 σ 随温度的升高而升高. Ca 掺 杂后 Ba3Ca1+xNb2−xO9−δ 的电导率显著提高了 3~5 个数量级,这是由于 Ca 掺杂导致材料产生大量的 氧空位,如式(2)所示. CaO Ba3CaNb2O9 −−−−−−−−−−→ Ca ′′′ Nb + 3 2 V •• O +O × O (2) Ca′′′ Nb V •• O O × O 式中, 为掺杂在 Nb5+离子的 Ca2+离子, 为氧 空位, 为晶格中的氧离子,氧空位可诱导材料产 生质子、氧离子及电子空穴导电,如式(3)、(4). V •• O +H2O+O × O = 2OH• O (3) V •• O + 1 2 O2 = O × O +2 h• (4) OH• 式中, O 为与晶格氧成键的质子. 由图 2 可见 ,随着材料中 Ca 掺杂量的增加 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)样品的电 导率先增加后降低,x=0.18 的样品电导率最高. 当 掺杂量 x0.18 时,材料的电导率随着 Ca 掺杂量的增加开 始降低,这是由于过多的掺杂导致材料产生了较 多的缺陷,阻碍了材料中载流子的迁移,导致其电 导率降低. 2.3 载流子迁移数分析 PO2 PH2O 研究测试 了 Ba3Ca1+xNb2−xO9−δ( x=0.10、 0.18、 0.30)样品在不同温度、不同氧分压 及不同水分 压 下的电导率(如图 3 所示)以计算材料中各 载流子迁移数. 由 图 3 可见 , Ba3Ca1+xNb2−xO9−δ( x=0.10、 0.18、 0.30)样品的电导率随氧分压的增加逐渐增加,这 是材料中电子空穴导电导致的. 根据式(4),在含 氧气氛中材料的电子空穴浓度随气氛氧分压的增 加逐渐增大,因此高氧分压可导致材料电导率的 提高. 4 √ 根据图 PO2 3,材料的电导率 σ 与 呈线性关 系,符合质子导体的理论电动势规律[23−25] ,如式 (5)~(8)所示. σOH• O σ ∗ OH• O = ( √ 1+ α PH2O −1 ) · PH2O √ 1+α−1 (5) σV•• O σ ∗ V•• O = ( √ 1+ α PH2O −1 )2 · PH2O α (6) σh σ ∗ h • = ( √ 1+ α PH2O −1 ) · √ PH2O α · 4 √ PO2 (7) σtot = σOH• O +σV•• O +σh • (8) tH = σOH• O /σtot, tO = σV•• O /σtot, th = σh •/σtot (9) 10 20 30 40 50 2θ/(°) Ba3Ca1.18Nb1.82O3-δ x=0 x=0.10 x=0.18 x=0.30 Intensity (a.u.) 60 70 80 90 28 29 30 31 32 2θ/(°) 图 1 在 1600 ℃ 烧结 10 h 后的 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)样品的 XRD 图 Fig.1 XRD pattern of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) specimen, sintered at 1600 ℃ for 10 h 500 550 600 Temperature/℃ 10−8 10−7 10−6 10−5 10−4 10−3 x=0 x=0.10 x=0.18 x=0.30 σ/(S·cm−1 ) 650 700 750 800 图 2 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)样品的电导率随温度 变化曲线 Fig.2 Temperature‒dependent conductivity of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) specimen · 1034 · 工程科学学报,第 43 卷,第 8 期
丁玉石等:Ba3Ca1+rNb2-Og-s复合钙钛矿型固体电解质性能研究 ·1035· (a) ■500℃ (b) ■500℃ 5 ·550℃ ·550℃ .6009℃ 4 4 750℃ ,800℃ =800℃ 2 2 - 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 P/(105 Pa)14 P/(105 Pa) 图3Ba,Ca11gNb1s2Og-样品的电导率随氧分压的变化曲线.(a)P00.62kPa:(b)PHo-3.17kPa Fig.3 Oxygen partial pressure-dependent conductivity of Ba CaNb(a)PHo-0.62 kPa (b)Po=3.17 kPa 式中,0o此为材料的质子电导率,6为材料的本 结果表明,当Ca掺杂量较高时(x=0.18、0.30),材 征质子电导率,:为材料的氧空位电导率,为 料的氧空位浓度较高,导致材料的氧离子电导率 材料的本征氧空位电导率,σ为材料的电子空穴 较高,其氧离子迁移数也提高,相应的其质子迁移 电导率,i为材料的本征电子空穴电导率,oo为 数相对降低 材料的总电导率,α为与材料的掺杂量相关的常 3结论 数,为材料的质子迁移数,o为材料的氧离子迁 移数,1为材料的电子空穴迁移数 (1)研究采用固相合成法制备得到了复合钙钛 根据式(5)~(9)对图3进行线性拟合可求出 刊矿相的BaCa1+rNb2-Og-(=0、0.10、0.18、0.30)材料. 各载流子迁移数,如图4所示 (2)随着Ca掺杂量的增加Ba3Ca1+xNb2-O,-d (x=0、0.10、0.18、0.30)样品的电导率先增加后降 1.0 低,x=0.18的样品电导率最高 (3)BaCa+rNb2-Og-(x=0.10、0.18、0.30)材料 是06r0l0n80 在含氢中的电子空穴迁移数较低,当温度低于 750℃时,材料中质子导电为主;当温度达800℃ 20.4 -g6-r6-r6 后,材料中氧离子导电为主 (4)Ca掺杂量x=0.10的样品质子迁移数最高, 随着摻杂量的增加样品氧离子迁移数逐渐增大, 质子迁移数逐渐降低 500550600650700750.800 Temperature/C 参考文献 图4含氢气氛中Ba,Ca1rNb2-0g-(x=0、0.10、0.18、0.30)样品的载 [1]Kreuer K D.Proton-conducting oxides.Annu Rev Mater Res, 流子迁移数随温度变化曲线 2003,33(1):333 Fig.4 Change in the proton,oxygen vacancy,and hole transport [2]Marthinsen A,Wahnstrom G.Percolation transition in hole- numbers of Ba;CaNb2-09-(x=0,0.10,0.18,and 0.30)in Ar-2%H2 conducting acceptor-doped Barium zirconate.Chem Mater,2020, 由图4可见,Ba3Ca1+xNb2-Og-(x-0.10、0.18 32(13):5558 0.30)材料在含氢中的电子空穴迁移数较低,几乎 [3] Zhang J Y,Zhang Z T.Solid electrolyte based on perovskite-type 不存在电子空穴导电.随着温度的升高材料的氧 BaCeO3 and SrCeO3.J Univ Sci Technol Beijing,2000,22(3): 249 离子迁移数逐渐升高,质子迁移数逐渐降低.当温 (张俊英,张中太,BaCeO,和SrCeO,基钙钛矿型固体电解质.北 度低于750℃时,材料中质子导电为主;当温度达 京科技大学学报,2000,22(3):249) 800℃后,材料中氧离子导电为主.3=0.10的样品 [4]Zheng M H,Zhen XX,Zhao Z G.Preparation and 质子迁移数最高,随着掺杂量的提高x=0.18、0.30 characterization of Yb doped SrCeO:based high temperature 的样品氧离子迁移数较高.由图2中电导率分析 proton conductor.J Univ Sci Technol Beijing,1993,15(3):310
σOH• O σ ∗ OH• O σV•• O σ ∗ V•• O σh • σ ∗ h • σtot α 式中, 为材料的质子电导率, 为材料的本 征质子电导率, 为材料的氧空位电导率, 为 材料的本征氧空位电导率, 为材料的电子空穴 电导率, 为材料的本征电子空穴电导率, 为 材料的总电导率, 为与材料的掺杂量相关的常 数,tH 为材料的质子迁移数,tO 为材料的氧离子迁 移数,th 为材料的电子空穴迁移数. 根据式(5)~(9)对图 3 进行线性拟合可求出 各载流子迁移数,如图 4 所示. 500 550 600 Temperature/℃ 0 0.2 0.4 0.6 0.8 1.0 x=0.10 tH tO th tH tO th tH tO th x=0.18 x=0.30 Transference number 650 700 750 800 图 4 含氢气氛中 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)样品的载 流子迁移数随温度变化曲线 Fig.4 Change in the proton, oxygen vacancy, and hole transport numbers of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) in Ar−2%H2 由 图 4 可见 , Ba3Ca1+xNb2−xO9−δ( x=0.10、 0.18、 0.30)材料在含氢中的电子空穴迁移数较低,几乎 不存在电子空穴导电. 随着温度的升高材料的氧 离子迁移数逐渐升高,质子迁移数逐渐降低. 当温 度低于 750 ℃ 时,材料中质子导电为主;当温度达 800 ℃ 后,材料中氧离子导电为主. x=0.10 的样品 质子迁移数最高,随着掺杂量的提高 x=0.18、0.30 的样品氧离子迁移数较高. 由图 2 中电导率分析 结果表明,当 Ca 掺杂量较高时(x=0.18、0.30),材 料的氧空位浓度较高,导致材料的氧离子电导率 较高,其氧离子迁移数也提高,相应的其质子迁移 数相对降低. 3 结论 (1)研究采用固相合成法制备得到了复合钙钛 矿相的Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)材料. ( 2)随着 Ca 掺杂量的增加 Ba3Ca1+xNb2−xO9−δ (x=0、0.10、0.18、0.30)样品的电导率先增加后降 低,x=0.18 的样品电导率最高. (3)Ba3Ca1+xNb2−xO9−δ(x=0.10、0.18、0.30)材料 在含氢中的电子空穴迁移数较低,当温度低于 750 ℃ 时,材料中质子导电为主;当温度达 800 ℃ 后,材料中氧离子导电为主. (4)Ca 掺杂量 x=0.10 的样品质子迁移数最高, 随着掺杂量的增加样品氧离子迁移数逐渐增大, 质子迁移数逐渐降低. 参 考 文 献 Kreuer K D. Proton-conducting oxides. Annu Rev Mater Res, 2003, 33(1): 333 [1] Marthinsen A, Wahnström G. Percolation transition in holeconducting acceptor-doped Barium zirconate. Chem Mater, 2020, 32(13): 5558 [2] Zhang J Y, Zhang Z T. Solid electrolyte based on perovskite-type BaCeO3 and SrCeO3 . J Univ Sci Technol Beijing, 2000, 22(3): 249 (张俊英, 张中太. BaCeO3和SrCeO3基钙钛矿型固体电解质. 北 京科技大学学报, 2000, 22(3):249) [3] Zheng M H, Zhen X X, Zhao Z G. Preparation and characterization of Yb doped SrCeO3 based high temperature proton conductor. J Univ Sci Technol Beijing, 1993, 15(3): 310 [4] 0.4 0.6 0.8 0 1 2 3 4 5 (a) 500 ℃ 550 ℃ 600 ℃ 650 ℃ 700 ℃ 750 ℃ 800 ℃ σ/(mS·cm−1 ) 1.0 P 1/4/(105 Pa)1/4 O2 0.4 0.6 0.8 0 1 2 3 4 5 (b) 500 ℃ 550 ℃ 600 ℃ 650 ℃ 700 ℃ 750 ℃ 800 ℃ σ/(mS·cm−1 ) 1.0 P 1/4/(105 Pa)1/4 O2 图 3 Ba3Ca1.18Nb1.82O9−δ 样品的电导率随氧分压的变化曲线. (a) PH2O=0.62 kPa;(b) PH2O=3.17 kPa Fig.3 Oxygen partial pressure‒dependent conductivity of Ba3Ca1.18Nb1.82O9−δ : (a) PH2O=0.62 kPa; (b) PH2O=3.17 kPa 丁玉石等: Ba3Ca1+xNb2−xO9−δ 复合钙钛矿型固体电解质性能研究 · 1035 ·
·1036 工程科学学报,第43卷,第8期 (郑敏辉,甄秀欣,赵志刚.SCeO3基高温质子导体的制备与性 sensor auxiliary electrodes based on the CaFz-SiOz system.Chin 能测定.北京科技大学学报,1993,15(3):310) JEng,2016,38(4):476 [5]Zhou Y.Guan X,Zhou H,et al.Strongly correlated perovskite fuel (鞠靓辰,李杨,满文宽,等.CF2一SiO2型硅传感器辅助电极的 cells.Nae,2016,534(7606):231 制备及其定硅性能.工程科技学报,2016,38(4):476) [6]Bi L.Da'As E H.Shafi S P.Proton-conducting solid oxide fuel cell [16]Zhu Z W,Guo E Y,Wei Z L,et al.Tailoring Ba CaLIsNb1.82O- (SOFC)with Y-doped BaZrO electrolyte.Electrochem Commun, with Nio as electrolyte for proton-conducting solid oxide fuel 2017,80:20 cells.J Power Sources,2018,373:132 [7]Xie D.Ling A.Yan D.et al.A comparative study on the [17]Jaiswal S K,Yoon K J,Son J W,et al.Synthesis and investigation composite cathodes with proton conductor and oxygen ion con- on stability and electrical conductivity of Ti-doped Ba;CaTa ductor for proton-conducting solid oxide fuel cell.Electrochimica Ti,O (0x1.0)complex oxides.J Alloys Compd,2019,775:736 Acta,2020,344:136143 [18]Wang S W.Chen Y.Fang S M.et al.Novel chemically stable [8]Tong Y C,Wang Y,Cui C S,et al.Preparation and characte- BaCa1.1sNb1.82-Y,0-s proton conductor:Improved proton rization of symmetrical protonic ceramic fuel cells as electro- conductivity through tailored cation ordering.Chem Mater,2014, chemical hydrogen pumps.J Power Sources,2020,457:228036 26(6):2021 [9]Ishiyama T,Kishimoto H,Develos-Bagarinao K,et al.Correlation [19]Ananyev M V,Farlenkov A S,Kurumchin E K.Isotopic exchange between dissolved protons in nickel-doped BaZro.Ceo.7Yo. between hydrogen from the gas phase and proton-conducting Ybo.O and its electrical conductive properties.Inorg Chem, oxides:Theory and experiment.Int J Hydrog Energy,2018, 2017,56(19):11876 43(29):13373 [10]Tong Y C,Meng X,Luo T,et al.Protonic ceramic electrochemical [20]Sazinas R,Einarsrud M A,Grande T.Toughening of Y-doped cell for efficient separation of hydrogen.ACS Appl Mater BaZrO3 proton conducting electrolytes by hydration.J Mater Interfaces,2020,12(23):25809 Chem A,2017,5(12:5846 [11]Montaleone D.Mercadelli E.Escolastico S.et al.All-ceramic [21]Bohn H G,Schober T,Mono T,et al.The high temperature proton asymmetric membranes with superior hydrogen permeation.J conductor BaCa1.IsNb1s20-.I.Electrical conductivity.Solid Mater Chem A,2018,6(32):15718 Sate1onic3,1999,117(3-4):219 [12]Morejudo S H,Zanon R,Escolastico S,et al.Direct conversion of [22]Liang K C.Du Y,Nowick A S.Fast high-temperature proton methane to aromatics in a catalytic co-ionic membrane reactor transport in nonstoichiometric mixed perovskites.Solid Stare Science,2016,353(6299):563 1omic3,1994,69(2):117 [13]Li Y,Wang CZ,Zhang Z L,et al.A hydrogen sensor using [23]Ding YS,Li Y,Huang WL.Influence of grain interior and grain SrCeo.95YboosO3 as proton conductor and YH+YH2-as boundaries on transport properties of scandium-doped calcium reference electrode for determining hydrogen pressure in solid zirconate.J Am Ceram Soc,2020,103(4):2653 steel.J Mater Sci Technol,2010,26(10):957 [24]Ding YS,Li Y,Zhang C J,et al.Effect of grain interior and grain [14]Kalyakin A S.Lyagaeva J G,Chuikin A Y,et al.A high- boundaries on transport properties of Sc-doped CaHfO:.JAlloys temperature electrochemical sensor based on CaZro.sSco.osO3- Compd,.2020,834:155126 for humidity analysis in oxidation atmospheres.J Solid State [25]Frade J R.Theoretical behaviour of concentration cells based on Electrochem,2019,23(1):73 ABO;perovskite materials with protonic and oxygen ion [15]Ju L C,L Y,Man W K,et al.Preparation and property of silicon conduction.Solid State lonics,1995,78(1-2):87
(郑敏辉, 甄秀欣, 赵志刚. SrCeO3基高温质子导体的制备与性 能测定. 北京科技大学学报, 1993, 15(3):310) Zhou Y, Guan X, Zhou H, et al. Strongly correlated perovskite fuel cells. Nature, 2016, 534(7606): 231 [5] Bi L, Da'As E H, Shafi S P. Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem Commun, 2017, 80: 20 [6] Xie D, Ling A, Yan D, et al. A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell. Electrochimica Acta, 2020, 344: 136143 [7] Tong Y C, Wang Y, Cui C S, et al. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. J Power Sources, 2020, 457: 228036 [8] Ishiyama T, Kishimoto H, Develos-Bagarinao K, et al. Correlation between dissolved protons in nickel-doped BaZr0.1Ce0.7Y0.1 Yb0.1O3−δ and its electrical conductive properties. Inorg Chem, 2017, 56(19): 11876 [9] Tong Y C, Meng X, Luo T, et al. Protonic ceramic electrochemical cell for efficient separation of hydrogen. ACS Appl Mater Interfaces, 2020, 12(23): 25809 [10] Montaleone D, Mercadelli E, Escolástico S, et al. All-ceramic asymmetric membranes with superior hydrogen permeation. J Mater Chem A, 2018, 6(32): 15718 [11] Morejudo S H, Zanón R, Escolástico S, et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 2016, 353(6299): 563 [12] Li Y, Wang C Z, Zhang Z L, et al. A hydrogen sensor using SrCe0.95Yb0.05O3−α as proton conductor and YHx+YH2−z as reference electrode for determining hydrogen pressure in solid steel. J Mater Sci Technol, 2010, 26(10): 957 [13] Kalyakin A S, Lyagaeva J G, Chuikin A Y, et al. A hightemperature electrochemical sensor based on CaZr0.95Sc0.05O3−δ for humidity analysis in oxidation atmospheres. J Solid State Electrochem, 2019, 23(1): 73 [14] [15] Ju L C, L Y, Man W K, et al. Preparation and property of silicon sensor auxiliary electrodes based on the CaF2—SiO2 system. Chin J Eng, 2016, 38(4): 476 (鞠靓辰, 李杨, 满文宽, 等. CaF2—SiO2型硅传感器辅助电极的 制备及其定硅性能. 工程科技学报, 2016, 38(4):476) Zhu Z W, Guo E Y, Wei Z L, et al. Tailoring Ba3Ca1.18Nb1.82O9−δ with NiO as electrolyte for proton-conducting solid oxide fuel cells. J Power Sources, 2018, 373: 132 [16] Jaiswal S K, Yoon K J, Son J W, et al. Synthesis and investigation on stability and electrical conductivity of Ti-doped Ba3CaTa2−x TixO9 (0≤x≤1.0) complex oxides. J Alloys Compd, 2019, 775: 736 [17] Wang S W, Chen Y, Fang S M, et al. Novel chemically stable Ba3Ca1.18Nb1.82−xYxO9−δ proton conductor: Improved proton conductivity through tailored cation ordering. Chem Mater, 2014, 26(6): 2021 [18] Ananyev M V, Farlenkov A S, Kurumchin E K. Isotopic exchange between hydrogen from the gas phase and proton-conducting oxides: Theory and experiment. Int J Hydrog Energy, 2018, 43(29): 13373 [19] Sažinas R, Einarsrud M A, Grande T. Toughening of Y-doped BaZrO3 proton conducting electrolytes by hydration. J Mater Chem A, 2017, 5(12): 5846 [20] Bohn H G, Schober T, Mono T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9−δ . I. Electrical conductivity. Solid State Ionics, 1999, 117(3-4): 219 [21] Liang K C, Du Y, Nowick A S. Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics, 1994, 69(2): 117 [22] Ding Y S, Li Y, Huang W L. Influence of grain interior and grain boundaries on transport properties of scandium-doped calcium zirconate. J Am Ceram Soc, 2020, 103(4): 2653 [23] Ding Y S, Li Y, Zhang C J, et al. Effect of grain interior and grain boundaries on transport properties of Sc-doped CaHfO3 . J Alloys Compd, 2020, 834: 155126 [24] Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1-2): 87 [25] · 1036 · 工程科学学报,第 43 卷,第 8 期