
理学院本科生“探究式学习”项目化学综合实验讲义黄晓春汕头大学理学院化学系-
理学院本科生“探究式学习”项目 化学综合实验讲义 黄晓春 汕头大学理学院化学系 1

目 录实验一MCM-22分子筛的合成、表征及应用实验二乙炔二茂铁的制备及鉴定实验三新型有机半导体材料的设计、合成、性质及其应用研究..13实验四双微乳体系制金属纳米粒子及其表征.17实验五强酸型阳离子交换树脂的制备及其交换量的测定19.23实验六配合物键合异构体的红外光谱测定.26实验七离子型化合物的离子交换分离.29实验八环境友好催化剂的研制、性能测定及结构分析42实验九高清晰喷墨数码打印相纸的研制实验十光谱法研究生物大分子与小分子相互作用44
目 录 实验一 MCM-22 分子筛的合成、表征及应用.1 实验二 乙炔二茂铁的制备及鉴定 .7 实验三 新型有机半导体材料的设计、合成、性质及其应用研究.13 实验四 双微乳体系制金属纳米粒子及其表征.17 实验五 强酸型阳离子交换树脂的制备及其交换量的测定.19 实验六 配合物键合异构体的红外光谱测定 .23 实验七 离子型化合物的离子交换分离 .26 实验八 环境友好催化剂的研制、性能测定及结构分析.29 实验九 高清晰喷墨数码打印相纸的研制 .42 实验十 光谱法研究生物大分子与小分子相互作用.44 1

实验一MCM-22分子筛的合成、表征及应用指导教师:方奕文一、实验目的1、熟悉水热合成法的原理、方法;2、初步了解XRD、IR、SEM等仪器的使用方法和谱图的分析方法3、了解多相催化的设备构成、催化反应的实现过程以及数据的处理方法。二、实验原理1、MCM-22及其合成方法简介MCM-22沸石分子筛是美国Mobi1公司于1990年开发的一种新型分子筛,1997年国际沸石联合会(IZA)将其结构定义为MWW型。Leonowicz等人的研究结构表明,MCM-22分子筛拥有两套互不相通的多维孔道体系:一是孔径为0.4nmx0.59nm的层内十元环二维正弦网状孔道二是尺寸为0.71nm×0.71nm×1.82nm的层间十二元环超笼,以0.4nm×0.54nm的十元环开口与外界相通。由于具有独特的晶体结构、高的微孔率和孔容以及优良的水热稳定性能和酸性性能,使得MCM-22分子筛对烃类催化裂化、芳烃烷基化、芳烃芳构化、甲苯岐化等反应都具有优异的催化性能。MCM-22分子筛的合成通常采用水热合成法。水热合成法又分为动态水热法和静态水热法。静态水热合成是在合成过程中,合成胶液处于静止状态,不受搅拌速度影响,所需反应时间一般较长,适用于实验室合成;动态水热合成是将反应的凝胶母液进行搅拌或旋转,所需反应时间相对较短,适用于规模化合成。2、水热合成法简介水热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条件下,利用溶液中物质化学反应所进行的合成,是研究物质在高温和密闭或高压条件下溶液中的化学行为与规律的化学分支。从模拟地矿生成开始,到沸石分子筛和其它晶体材料的合成,其研究已经历了一百多年的历史。(1)合成的特点★由于在水热条件下反应物反应性能的改变、活性的提高,水热合成方法有可能代替固相反应以及难于进行的合成反应.并产生一系列新的合成方法。★由于在水热条件下中间态、介稳态以及特殊物相易于生成,因此能合成与开发一系列特种介稳结构、特种凝聚态的新合成产物。★能够使低熔点化合物、高蒸气压且不能在融体中生成的物质、高温分解相在水热低温条1
实验一 MCM-22 分子筛的合成、表征及应用 指导教师:方奕文 一、实验目的 1、 熟悉水热合成法的原理、方法; 2、 初步了解 XRD、IR、SEM 等仪器的使用方法和谱图的分析方法; 3、 了解多相催化的设备构成、催化反应的实现过程以及数据的处理方法。 二、实验原理 1、MCM-22及其合成方法简介 MCM-22沸石分子筛是美国Mobil公司于1990年开发的一种新型分子筛,1997年国际沸石 联合会(IZA)将其结构定义为MWW型。Leonowicz等人的研究结构表明,MCM-22分子筛拥有 两套互不相通的多维孔道体系:一是孔径为0.4nm×0.59nm的层内十元环二维正弦网状孔道; 二是尺寸为0.71nm×0.71nm×1.82nm的层间十二元环超笼,以0.4nm×0.54nm的十元环开口与 外界相通。由于具有独特的晶体结构、高的微孔率和孔容以及优良的水热稳定性能和酸性性 能,使得MCM-22分子筛对烃类催化裂化、芳烃烷基化、芳烃芳构化、甲苯岐化等反应都具有 优异的催化性能。 MCM-22分子筛的合成通常采用水热合成法。水热合成法又分为动态水热法和静态水热 法。静态水热合成是在合成过程中,合成胶液处于静止状态,不受搅拌速度影响,所需反应 时间一般较长,适用于实验室合成;动态水热合成是将反应的凝胶母液进行搅拌或旋转,所 需反应时间相对较短,适用于规模化合成。 2、水热合成法简介 水热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条件下,利用溶液中物质化 学反应所进行的合成,是研究物质在高温和密闭或高压条件下溶液中的化学行为与规律的化 学分支。从模拟地矿生成开始,到沸石分子筛和其它晶体材料的合成, 其研究已经历了一百 多年的历史。 (1)合成的特点 ★ 由于在水热条件下反应物反应性能的改变、活性的提高,水热合成方法有可能代替固相 反应以及难于进行的合成反应.并产生一系列新的合成方法。 ★ 由于在水热条件下中间态、介稳态以及特殊物相易于生成,因此能合成与开发一系列特 种介稳结构、特种凝聚态的新合成产物。 ★ 能够使低熔点化合物、高蒸气压且不能在融体中生成的物质、高温分解相在水热低温条 1

件下晶化生成。★水热的低温、等压、溶液条件,有利于生长极少缺陷、取向好、完美的晶体,且合成产物结晶度高以及易于控制产物晶体的粒度。★由于易于调节水热条件下的环境气氛,因而有利于低价态、中间价态与特殊价态化合物的生成,并能均匀地进行掺杂。(2)设备反应釜是进行高温高压水热实验的基本设备。研究的内容和水平在很大程度上取决于高压设备的性能和效果。★在高压容器的材料选择上,要求机械强度大、耐高温、耐腐蚀和易加工。★在高压容器的设计上,要求结构简单,便于开装和清洗、密封严密、安全可靠。(3)合成程序★装满度(FC)一一是指反应混合物占密闭反应釜空间的体积分数。装满度要适中,既要保持反应物处于液相传质的反应状态,又要防止由于过大的装满度而导致压力过高。一般控制在60%-80%。注意:80%以上的装满度,240℃下压力有突变。★一般合成程序选择反应物料确定合成物料的配方*配料序摸索,混料搅拌装釜,封釜确定反应温度、时间、状态(静止与动态晶化)取釜,冷却(空气冷、水冷)+开金取样过滤,干燥光学显微镜观察晶貌与粒度分布粉末X射线衍射物相分析3、多相催化反应装置2
件下晶化生成。 ★ 水热的低温、等压、溶液条件,有利于生长极少缺陷、取向好、完美的晶体,且合成产 物结晶度高以及易于控制产物晶体的粒度。 ★ 由于易于调节水热条件下的环境气氛,因而有利于低价态、中间价态与特殊价态化合物 的生成,并能均匀地进行掺杂。 (2)设备 反应釜是进行高温高压水热实验的基本设备。研究的内容和水平在很大程度上取决于高 压设备的性能和效果。 ★ 在高压容器的材料选择上,要求机械强度大、耐高温、耐腐蚀和易加工。 ★ 在高压容器的设计上,要求结构简单,便于开装和清洗、密封严密、安全可靠。 (3)合成程序 ★ 装满度(FC)——是指反应混合物占密闭反应釜空间的体积分数。 装满度要适中,既要保持反应物处于液相传质的反应状态,又要防止由于过大的装满度 而导致压力过高。一般控制在 60%-80%。注意:80%以上的装满度,240℃下压力有突变。 ★ 一般合成程序 选择反应物料 确定合成物料的配方 配料序摸索,混料搅拌 装釜,封釜 确定反应温度、时间、状态(静止与动态晶化) 取釜,冷却(空气冷、水冷) 开釜取样 过滤,干燥 光学显微镜观察晶貌与粒度分布 粉末X射线衍射物相分析 3、 多相催化反应装置 2

JFCI三通阀DMEIFC反应器O1 IFCcoIMFC鼓泡器ON:六通阅冷阱MFC上六通解气相色谱排空三、实验仪器1、电热恒温鼓风干燥箱2、集热式磁力加热搅拌器3、电子天平马弗炉4、5、质量流量控制器6、气相色谱仪7、压片机8、高压反应釜9、蒸馏水器10、超声波仪11、其它常规玻璃仪器四、实验试剂1、硅酸H,SiO32、铝酸钠NaAIO23、氢氧化钠NaOH4、六亚甲基亚胺(HMI)(CH2)6NH5、硝酸铵NH4NO3五、实验步骤3
三、实验仪器 1、 电热恒温鼓风干燥箱 2、 集热式磁力加热搅拌器 3、 电子天平 4、 马弗炉 5、 质量流量控制器 6、 气相色谱仪 7、 压片机 8、 高压反应釜 9、蒸馏水器 10、超声波仪 11、其它常规玻璃仪器 四、实验试剂 1、 硅酸 H 2SiO 3 2、 铝酸钠NaAlO 2 3、 氢氧化钠 NaOH 4、 六亚甲基亚胺(HMI )(CH 2 ) 6NH 5、 硝酸铵NH 4NO 3 五、实验步骤 3

1、MCM-22的合成(1)准确称取0.84g氢氧化钠,置于塑料烧杯中,加入45g的去离子水,剧烈搅拌条件下,将16.6g硅酸缓慢加入其中(分成小批,约30min加完),然后将12mL六亚甲基亚胺(HMI)滴加到上述混合物中,标识为A(2)准确称取1.76g铝酸钠,置于玻璃烧杯中,加入108g去离子,搅拌溶解后,标识为B。(3)将B滴加到A中,50℃恒温老化一段时间后,将混合物转移至聚四氟乙烯内衬的不锈钢反应釜中密闭,于150℃烘箱中静态水热晶化一段时间。晶化结束后,取出反应釜骤冷至室温,将产物抽滤,并用去离子水反复洗涤,直至洗涤液为中性,所得白色滤饼于110℃干燥24h,得到MCM-22(P)。将MCM-22(P)置于马弗炉中,以3C/min的速率程序升温至560℃焙烧8h脱除模板剂,即得到n(SiO2)/n(A/203)=30的Na型MCM-22分子筛,记为MCM-22(C)。(4)将焙烧后除去模板剂后的Na型MCM-22(C)分子筛粉末置于90℃、浓度约为1mol/L的硝酸铵溶液中,固液比约1:15(g/mL),回流,离子交换8h后,将悬浮液过滤,用去离子水洗涤,所得滤饼在100℃下烘干,重复离子交换2次,烘干后置于马弗炉中,在空气气氛中以3℃/min程序升温至540℃焙烧4h,即得到H型MCM-22分子筛,记为H-MCM-22。2、MCM-22的表征取适量自制的MCM-22样品,进行XRD、FT-IR和SEM分析,分析条件如下:(1)X-射线衍射分析(XRD)采用Bruke/D8粉末X射线衍射仪进行XRD分析,以CuKα为辐射源,管电压为40KV,管电流为40mA,扫描速度5%/min,扫描范围5~40°或0~10°(2)红外光谱分析(FT-IR)采用NicoletCompact-410红外光谱仪进行FT-IR测试,样品与漠化钾按1:150比例混合、研磨制片,室温记录谱图,扫描范围400-4000cm,分辨率为4cm。(3)扫描电镜分析(SEM)在日本电子(JEOL)公司的JSM-6360LA型扫描电镜上进行。将样品均匀分散于导电胶上,并进行真空蒸涂Pt金属导电层处理,再置于仪器上进行扫描。测试电压为16KV。3、MCM-22的应用——DME水解反应4
1、MCM-22 的合成 (1) 准确称取 0.84g 氢氧化钠,置于塑料烧杯中,加入 45g 的去离子水,剧烈搅拌条件 下,将 16.6g 硅酸缓慢加入其中(分成小批,约 30min 加完),然后将 12mL 六亚甲 基亚胺(HMI)滴加到上述混合物中,标识为 A (2) 准确称取 1.76g 铝酸钠,置于玻璃烧杯中,加入 108g 去离子,搅拌溶解后,标识为 B。 (3) 将 B 滴加到 A 中,50℃恒温老化一段时间后,将混合物转移至聚四氟乙烯内衬的不 锈钢反应釜中密闭,于 150℃烘箱中静态水热晶化一段时间。晶化结束后,取出反 应釜骤冷至室温,将产物抽滤,并用去离子水反复洗涤,直至洗涤液为中性,所得 白色滤饼于 110℃干燥 24h,得到 MCM-22(P)。将 MCM-22(P)置于马弗炉中,以 3 ℃/min 的速率程序升温至 560℃焙烧 8h 脱除模板剂,即得到 n(SiO2)/n(Al2O3) =30 的 Na 型 MCM-22 分子筛,记为 MCM-22(C)。 (4) 将焙烧后除去模板剂后的 Na 型 MCM-22(C) 分子筛粉末置于 90℃、浓度约为 1 mol/L 的硝酸铵溶液中,固液比约 1:15(g/mL),回流,离子交换 8h 后,将悬浮液过 滤,用去离子水洗涤,所得滤饼在 100 ℃下烘干,重复离子交换 2 次,烘干后置于 马弗炉中,在空气气氛中以 3℃/min 程序升温至 540℃焙烧 4h,即得到 H 型 MCM-22 分子筛,记为 H-MCM-22。 2、MCM-22 的表征 取适量自制的 MCM-22 样品,进行 XRD、FT-IR 和 SEM 分析,分析条件如下: (1)X-射线衍射分析(XRD) 采用 Bruke/D8 粉末 X 射线衍射仪进行 XRD 分析,以 CuKα为辐射源,管电压为 40 KV, 管电流为 40 mA,扫描速度 5°/min,扫描范围 5~40°或 0~10°。 (2)红外光谱分析(FT-IR) 采用Nicolet Compact -410 红外光谱仪进行FT-IR测试,样品与溴化钾按 1:150 比例混合、 研磨制片,室温记录谱图,扫描范围 400-4000 cm-1,分辨率为 4 cm-1。 (3)扫描电镜分析(SEM) 在日本电子(JEOL)公司的 JSM-6360LA 型扫描电镜上进行。将样品均匀分散于导电 胶上,并进行真空蒸涂 Pt 金属导电层处理,再置于仪器上进行扫描。测试电压为 16 KV。 3、MCM-22 的应用——DME 水解反应 4

(1)称取自制的MCM-22样品1g,在压片机上进行压片,捣碎后过筛,制得粒径为20-40目的催化剂。(2)准确称取0.3g的MCM-22催化剂,装填到石英反应器中,并接入反应装置。(3)打开反应器、鼓泡器加热装置的电源,以设定的升温程序(已设定)进行加热,然后,打开反应气(氮气、二甲醚)的流量控制开关,调节N2的流量为4.6mL/min、DME的流量为8.5mL/min。(4)打开气相色谱仪的载气开关(载气为He气,流速为30mL/min),然后打开色谱仪总开关和加热开关,设定加热电流为150mA,注射器、柱箱、TCD检测器的温度分别为140℃、140℃,和200℃。(5)在反应器、鼓泡器、气相色谱仪各部位温度达到设定温度后,反应30分钟,并进行在线测量,记录测量结果(各谱峰面积)六、结果记录与计算表1结果记录与计算鼓泡气峰DME峰H0峰甲醇峰二甲醚的反应DME流N2流N2量量温度温度面积面积面积面积转化率注:结果计算按以下方法进行1.反应器出口处反应气流的流速Foler通过(1)进行校正。outletFmlt +X = Fama XX(1)2.反应器出口处反应气流中气体物种的摩尔分数Xoulet通过(2)进行计算。J,xAioulet(2)Z f,× A,其中:f为色谱检测物种的相对校正因子3.二甲醚的转化率通过(3)进行计算。5
(1) 称取自制的 MCM-22 样品 1g,在压片机上进行压片,捣碎后过筛,制得粒径为 20-40 目的催化剂。 (2) 准确称取 0.3g 的 MCM-22 催化剂,装填到石英反应器中,并接入反应装置。 (3) 打开反应器、鼓泡器加热装置的电源,以设定的升温程序(已设定)进行加热,然 后,打开反应气(氮气、二甲醚)的流量控制开关,调节N2的流量为 4.6 mL/min、 DME的流量为 8.5 mL/min。 (4) 打开气相色谱仪的载气开关(载气为 He 气,流速为 30 mL/min),然后打开色谱仪 总开关和加热开关,设定加热电流为 150 mA,注射器、柱箱、TCD 检测器的温度 分别为 140 ℃、140 ℃,和 200 ℃。 (5) 在反应器、鼓泡器、气相色谱仪各部位温度达到设定温度后,反应 30 分钟,并进行 在线测量,记录测量结果(各谱峰面积) 六、结果记录与计算 表 1 结果记录与计算 反 应 温度 鼓泡气 温度 DME 流 量 N2 流 量 N2 峰 面积 DME 峰 面积 H2O 峰 面积 甲醇峰 面积 二甲醚的 转化率 注:结果计算按以下方法进行 1. 反应器出口处反应气流的流速Foutlet通过(1)进行校正。 F XF outlet N inlet outlet N inlet X 2 2 =× × (1) 2. 反应器出口处反应气流中气体物种的摩尔分数 通过( Xi outlet 2)进行计算。 ∑ × × = ii outlet i i Af Aif X (2) 其中:f i为色谱检测物种的相对校正因子 3. 二甲醚的转化率通过(3)进行计算。 5

F×X-F×XCony.=×XmFer(3)X*X1-3Xxx6
XX XX XF XFXF outlet N inlet i inlet N outlet i inlet i inlet outlet i inlet outlet i inlet Conv 2 2 1 . × × −= × −× × = (3) 6

实验二乙炔二茂铁的制备及鉴定指导教师:尹业高Preparation and identification of ethynylferrocene?COCHaCHCHOC=CH1) POCla/OMF1N NaH-FE2) NaOAcdioxan1.Procedure(2-Formyl-1-chlorovinyl)ferrocene:A dry,1-L,three-necked, round-bottomedflask,equipped with a magnetic stirring bar, an inlet valvefor inert gas, apressure-equalizing addition funnel, and an outlet valve vented through a mercurybubbler, is charged with 22.8 g (0.1 mol) of acetylferrocene (Note 1) and 25 mL(0.32 mol) of N,N-dimethylformamide (DMF) (Note 2). The system is flushed withargon, cooled to ooC by means of an ice bath, and the brown reaction mixture isstirred well for several minutes (Note 3).Separately,a dry,100-mL,graduatedcylinder bearing a standard taper ground joint with an argon inlet/outlet, is purgedwith nitrogen and charged with25 mL (0.32 mol)of DME.TheDME is cooled incrushed ice and agitated by hand during the cautious addition of 25 mL (0.27 mol)of phosphorus oxychloride (Note4).Theresulting viscous,red complex istransferred to the dropping funnel and added to the magnetically stirred mixture ofacetylferrocene and DME dropwise over 30 min (Note 5).Complete addition isassured bywashingtheadditionfunnelandwalls of theflask witha small amount ofDMF using a pipette. The mixture is stirred at ooC for 2 hr during which time thecolorof thereactionmixturechangesfromdarkbrowntooliveandultimatelytodeep blue. Prior to neutralization, the dropping funnel is replaced by a refluxcondenser (Note 6). A 75-mL portion of diethyl ether is added, and the viscousmixtureisstirred vigorouslyforseveral minutes (Note7)Under a positive pressure ofargon with continued ice cooling,116g (0.85mol)ofsodium acetate trihydrate is cautiouslyadded to the reaction mixture in one portionthrougha powder funnel followed by cautious addition of10mL of water withvigorousstirring(Note8).Theicebath is removed whereupontheorganiclayerundergoes a striking color changefrom colorless to ruby red indicating theformationof theformyl derivative.After1hr,anadditional 10mLofether isadded,andstirringiscontinuedfor3hratroomtemperaturetoensurecompletequenching7
实验二 乙炔二茂铁的制备及鉴定 指导教师:尹业高 Preparation and identification of ethynylferrocene 1. Procedure (2-Formyl-1-chlorovinyl)ferrocene: A dry, 1-L, three-necked, round-bottomed flask, equipped with a magnetic stirring bar, an inlet valve for inert gas, a pressure-equalizing addition funnel, and an outlet valve vented through a mercury bubbler, is charged with 22.8 g (0.1 mol) of acetylferrocene (Note 1) and 25 mL (0.32 mol) of N,N-dimethylformamide (DMF) (Note 2). The system is flushed with argon, cooled to 0°C by means of an ice bath, and the brown reaction mixture is stirred well for several minutes (Note 3). Separately, a dry, 100-mL, graduated cylinder bearing a standard taper ground joint with an argon inlet/outlet, is purged with nitrogen and charged with 25 mL (0.32 mol) of DMF. The DMF is cooled in crushed ice and agitated by hand during the cautious addition of 25 mL (0.27 mol) of phosphorus oxychloride (Note 4). The resulting viscous, red complex is transferred to the dropping funnel and added to the magnetically stirred mixture of acetylferrocene and DMF dropwise over 30 min (Note 5). Complete addition is assured by washing the addition funnel and walls of the flask with a small amount of DMF using a pipette. The mixture is stirred at 0°C for 2 hr during which time the color of the reaction mixture changes from dark brown to olive and ultimately to deep blue. Prior to neutralization, the dropping funnel is replaced by a reflux condenser (Note 6). A 75-mL portion of diethyl ether is added, and the viscous mixture is stirred vigorously for several minutes (Note 7). Under a positive pressure of argon with continued ice cooling, 116 g (0.85 mol) of sodium acetate trihydrate is cautiously added to the reaction mixture in one portion through a powder funnel followed by cautious addition of 10 mL of water with vigorous stirring (Note 8). The ice bath is removed whereupon the organic layer undergoes a striking color change from colorless to ruby red indicating the formation of the formyl derivative. After 1 hr, an additional 10 mL of ether is added, and stirring is continued for 3 hr at room temperature to ensure complete quenching. 7

Thereactionmixtureistransferredtoa2-Lseparatoryfunnelwithetherandwaterandmixedthoroughly,andtheorganicphaseisseparated.Theaqueousphaseisextracted several times with 100-mL portions of ether (Note 9). The combinedorganic phases are carefully washed twice with100-mLportions of saturatedaqueous sodium bicarbonate solution (CAUTION:gas evolution)and then with 100mLofwater(Note10).Theorganicphaseisdriedoversodiumsulfate,filtered,andconcentratedusingarotaryevaporatoraffording23.4-25.6g(85-93%)of(2-formyl-1-chlorovinyl)ferrocene(homogeneousbyTLCanalysis)asdeeppurplecrystals (mp 76-77°C) after drying under high vacuum (Note 11)Ethynylferrocene:Adry,1-L,three-necked,round-bottomedflask,equipped withamagnetic stirring bar,reflux condenser,and inlet/outlet valves formaintenance ofan inert atmosphere as described above, is flushed with argon, charged with 26.0 g(95.0 mmol) of (2-formyl-1-chlorovinyl)ferrocene and 300 mL of anhydrous1,4-dioxane (Note 12), and the apparatus is placed in an oil bath. The reactionmixtureisheatedtorefluxandafter5minatreflux,250mLofaboiling1Nsolutionof sodium hydroxide (a 2.5-fold excess) is cautiously added as rapidly as possible inoneportion(Note13),andthemixtureisheatedatrefluxforanother25min(Note14).Theoil bath is removed and thereactionmixture isallowedtocool to roomtemperature.Thereactionmixtureiscautiouslypouredintoiceandneutralizedwith1Nhydrochloric acid. After transfer to a 1-L separatory funnel, the aqueous mixture isextracted five times with 100 mL of hexane (Note 15). After the combined organicextracts are successively washed twicewith 100-mL portions of saturated aqueoussodium bicarbonate solution and water, the organic phase is dried over sodiumsulfate,filtered,and concentrated using a rotary evaporatoraffording an orangeresidueof crudeethynylferrocene.Thecrudeproductispurifiedbyflashchromatography(SilicaG-60,5×15cmcolumn)withelutionbyhexane(Note16)Concentrationofthefractionscontainingtheproductanddryingunderhighvacuumaffords 14.8-15.0 g (74-75%)of pure ethynylferrocene which crystallizes as anorange solid, mp 53°C (lit.2 52-53.5°C) upon seeding (Note 17).2.Notes1.Acetylferrocene, CizHzFe0, 95% (FW (228.07), mp 85-86°C) is available fromAldrich Chemical Company, Inc. or Lancaster Synthesis Ltd., and is used withoutfurther purification (CAUTION:highly toxic).Acetylferrocene should be carefully8
The reaction mixture is transferred to a 2-L separatory funnel with ether and water and mixed thoroughly, and the organic phase is separated. The aqueous phase is extracted several times with 100-mL portions of ether (Note 9). The combined organic phases are carefully washed twice with 100-mL portions of saturated aqueous sodium bicarbonate solution (CAUTION: gas evolution) and then with 100 mL of water (Note 10). The organic phase is dried over sodium sulfate, filtered, and concentrated using a rotary evaporator affording 23.4–25.6 g (85–93%) of (2-formyl-1-chlorovinyl)ferrocene (homogeneous by TLC analysis) as deep purple crystals (mp 76–77°C) after drying under high vacuum (Note 11). Ethynylferrocene: A dry, 1-L, three-necked, round-bottomed flask, equipped with a magnetic stirring bar, reflux condenser, and inlet/outlet valves for maintenance of an inert atmosphere as described above, is flushed with argon, charged with 26.0 g (95.0 mmol) of (2-formyl-1-chlorovinyl)ferrocene and 300 mL of anhydrous 1,4-dioxane (Note 12), and the apparatus is placed in an oil bath. The reaction mixture is heated to reflux and after 5 min at reflux, 250 mL of a boiling 1 N solution of sodium hydroxide (a 2.5-fold excess) is cautiously added as rapidly as possible in one portion (Note 13), and the mixture is heated at reflux for another 25 min (Note 14). The oil bath is removed and the reaction mixture is allowed to cool to room temperature. The reaction mixture is cautiously poured into ice and neutralized with 1 N hydrochloric acid. After transfer to a 1-L separatory funnel, the aqueous mixture is extracted five times with 100 mL of hexane (Note 15). After the combined organic extracts are successively washed twice with 100-mL portions of saturated aqueous sodium bicarbonate solution and water, the organic phase is dried over sodium sulfate, filtered, and concentrated using a rotary evaporator affording an orange residue of crude ethynylferrocene. The crude product is purified by flash chromatography (Silica G-60, 5 × 15 cm column) with elution by hexane (Note 16). Concentration of the fractions containing the product and drying under high vacuum affords 14.8–15.0 g (74–75%) of pure ethynylferrocene which crystallizes as an orange solid, mp 53°C (lit.2 52–53.5°C) upon seeding (Note 17). 2. Notes 1. Acetylferrocene, C12H12FeO, 95% (FW (228.07), mp 85–86°C) is available from Aldrich Chemical Company, Inc. or Lancaster Synthesis Ltd., and is used without further purification (CAUTION: highly toxic). Acetylferrocene should be carefully 8