计算机问题求解-论题1-13 -布尔代数 2015年12-31
计算机问题求解--论题1-13 --布尔代数 2015年12-31
问题1:这个是布尔代数的定义,你有没有一种熟悉的感 觉?它和另一个定义有什么异同之处?你能想到什么? Let B be a nonempty set with two binary operations and *a unary operation,and two distinct elements 0 and 1.Then B is called a Boolean algebra if the following axioms hold where a.b.c are any elements in B: B Commutative laws: (la)a+b=b+a (Ib)a*b=b*a [B2] Distributive laws: (2a)a+(b*c)=(a+b)*(a+c) (2b)a*(b+c)=(a米b)+(a*c) [B3] Identity laws: (3a)a+0=a (3b)a*1=a [Ba] Complement laws: (4a)a+a'=1 (4b)a*a=0 Axioms Defining a Lattice Let L be a nonempty set closed under two binary operations called meer and join.denoted respectively by A and V.Then L is called lattice if the following axioms hold where a,b,c are elements in L: [L1】Commutative law: (1a)aAb=b入d (Ib)avb=bva [L2]Associative law: (2a)(4八b)Ac=aA(bAc) (2b)(avb)vc=av(bvc) [L3]Absorption law: (34)4A(aVb)=a (3b)aV(a入b)=4 We will sometimes denote the lattice by (L.A,V)when we want to show which operations are involved
问题1:这个是布尔代数的定义,你有没有一种熟悉的感 觉?它和另一个定义有什么异同之处?你能想到什么?
“这个”代数和格 Theorem 15.2:Let a,b,c be any elements in a Boolean algebra B. (i)Idempotent laws: (5a)a+a=a (5b) a米a=a (i) Boundedness laws: 6a)4+1=1 (6b) a*0=0 Gii) Absorption laws: @0+0*b三a (7b)a*(a+b)=a (iv) Associative laws: (8a)(a++c三a+(b+c) (8b)(a*b)*c=a*(b*c) 问题2:显然,这个代数一定是个格!那么:多出来的那些特性 (由公理描述),有什么用呢?
“这个”代数和格 问题2:显然,这个代数一定是个格!那么:多出来的那些特性 (由公理描述),有什么用呢?
我们可以很容易的验证B3是布尔代数 (b)Let Bn=B x B x...x B (n factors)where the operations of+,*and'are defined componentwise using Fig.15-1.For notational convenience,we write the elements of B as n-bit sequences without commas.e.g.. x =110011 and y 111000 belong to B".Hence x+y=111011,x*y=110000,x′=001100 111 Then B"is a Boolean algebra.Here 0=000...0 is the zero element,and 1 =111...I is the unit element. 110 101 011 问题3:从这个B3中,我们能否设计一个“类似”的格? 元素有哪些?偏序关系是什么? 010 meet和join分别是什么? 100 001 000 B3
我们可以很容易的验证B3是布尔代数 001 111 110 101 011 010 100 000 B3 问题3:从这个B3中,我们能否设计一个“类似”的格? 元素有哪些?偏序关系是什么? meet和join分别是什么?
其实,布尔代数是一类特别的格: ·1,我们可以从布尔代数和偏序集两个角度共同定义一个“系统” ·2,布尔代数和有界有补分配格是“等价”的 Theorem 15.5:The following are equivalent in a Boolean algebra: (1)a+b=b,(2)a*b=a,(3)a'+b=1,(4)a*b=0 Thus in a Boolean alegbra we can write a b whenever any of the above four conditions is known to be true
其实,布尔代数是一类特别的格: • 1,我们可以从布尔代数和偏序集两个角度共同定义一个“系统” • 2,布尔代数和有界有补分配格是“等价”的
问题4: ·有界有补分配格一定有2n个元素 因为B1,B2,B3,..,Bn有2n个元素? 其实,我们还可以这样来观察: 1,这样的格中,原子个数是n个 2,除0外,所有元素都可以表示为一个或者多个原子的 join,所有由一个或者多个原子的join的结果都是格中元素。 3,这样的元素有2n.1个
问题4: • 有界有补分配格一定有2 n个元素 因为B1,B2,B3,…,Bn有2 n个元素? 其实,我们还可以这样来观察: 1,这样的格中,原子个数是n个 2,,除0外,所有元素都可以表示为一个或者多个原子的 join,所有由一个或者多个原子的join的结果都是格中元素。 3,这样的元素有2 n -1个
问题5:我们为什么要定义sum-of-products form?如何理解form是什么意思? Fig.15-3 rectangle(universal set)into eight numbered sets which can be represented as follows: (1)A∩B∩C(3)ABc∩C(5)AnBc∩Ce(7)AcnBnC (2)A∩BnCe(4)Ac∩B∩C(6)Ac∩BnCe(8)Ac∩BenCc
问题5:我们为什么要定义sum-of-products form?如何理解form是什么意思?
问题6:任意的布尔代数运算表达式,是否都 可以表达为某个"sum-of-products form'"? E=(x+y')+(xyz'+x'y)'and E2=((xy'z'+y)'+x'z)
问题6:任意的布尔代数运算表达式,是否都 可以表达为某个”sum-of-products form”?
回到举重裁判的问题 fx.y.) 相应的布尔表达式: 0 0 0 0 (x'( v(XAVAE) 0 0 1 0 0 1 0 0 问题7:有没有科学 0 1 1 0 0 法,从任意的一个布尔 什么? 11 0 1 逻辑表达式出发,得到 0 1 和它等价的最简表达式? 小代数表达式是什么? yZ+Xz+Xv
回到举重裁判的问题 x y z 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 f(x,y,z) 0 0 0 1 0 1 1 1 相应的布尔表达式: (x’yz) (xy’z) (xyz’) (xyz) 问题7:相应的布尔代数表达式是什么? x’ yz+ xy’ z+ xyz’+ xyz 问题8:相应的最简布尔代数表达式是什么? yz+xz+xy 问题7:有没有科学办 法,从任意的一个布尔 逻辑表达式出发,得到 和它等价的最简表达式?
复习几个概念: Literal?Fundamental product?Contained in? “惊艳”的吸收率: x'is not a literal of xy'z.Observe that if P is contained in P2,say P2 =P 2,then,by the absorption law, P1+P2=P1+P*Q=P1 Thus,for instance,x'+x'y=x
复习几个概念: Literal?Fundamental product?Contained in? “惊艳”的吸收率: