第5节探究弹性势能的表达式 [学考报告 考试要求 知识内容 弹性势能 学考 选考 1.知道什么叫弹性势能 2.知道探究弹簧弹性势能表达式的思路 基本要求 3.会定性分析决定弹簧弹性势能大小的相关因素 4.体会探究过程中的猜想、分析和转化的方法 体会求弹簧弹力做功时通过细分过程化变力为恒力的思想方法 发展要求 2.知道可以用F图象下的“面积”表示弹力所做的功 明 不要求掌握弹簧弹性势能的表达式 课堂导学 基础自诊课堂互动 知识点一探究弹性势能的表达式 [基础梳理] 1.弹性势能 (1)发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫 做弹性势能。 (2)发生形变的物体不一定具有弹性势能,只有发生弹性形变的物体才具有弹性势能。 (3)探究弹性势能表达式的方法 通过计算克服弹力所做的功,即拉力所做的功来定量计算弹性势能的大小 2.探究弹性势能的表达式 (1)猜想 ①弹性势能与弹簧的形变量有关,同一弹簧形变量越大,弹簧的弹性势能也越大。 ②弹性势能与弹簧的劲度系数有关,在形变量相冋时,劲度系数k越大,弹性势能越大 (2)探究过程:
第 5 节 探究弹性势能的表达式 [学考报告] 知识内容 弹性势能 考试要求 学考 选考 b b 基本要求 1.知道什么叫弹性势能 2.知道探究弹簧弹性势能表达式的思路 3.会定性分析决定弹簧弹性势能大小的相关因素 4.体会探究过程中的猜想、分析和转化的方法 发展要求 1.体会求弹簧弹力做功时通过细分过程化变力为恒力的思想方法 2.知道可以用 Fl 图象下的“面积”表示弹力所做的功 说明 不要求掌握弹簧弹性势能的表达式 [基 础 梳 理] 1.弹性势能 (1)发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫 做弹性势能。 (2)发生形变的物体不一定具有弹性势能,只有发生弹性形变的物体才具有弹性势能。 (3)探究弹性势能表达式的方法 通过计算克服弹力所做的功,即拉力所做的功来定量计算弹性势能的大小。 2.探究弹性势能的表达式 (1)猜想: ①弹性势能与弹簧的形变量有关,同一弹簧形变量越大,弹簧的弹性势能也越大。 ②弹性势能与弹簧的劲度系数有关,在形变量相同时,劲度系数 k 越大,弹性势能越大。 (2)探究过程:
①如图1所示,弹簧的劲度系数为k,左端固定,不加外力时,右端在A处,今用力F缓慢 向右拉弹簧,使弹簧伸长到B处,手克服弹簧弹力所做的功,其大小应该等于外力F对弹簧 所做的功,即弹簧增加的弹性势能。 Wwwe→F ②求拉力做的功 将弹簧的形变过程分成很多小段,每一小段中近似认为拉力是不变的。所以,每一小段拉力 做的功分别为W=F△l,=F△,=△l3,…。拉力在整个过程中所做的功W=腐 属十+…=F△+F2△l2+F△l+…。 ③计算求和式 类比匀变速直线运动中利用vt图象求位移,我们可以画出F图象,如图2所示。 每段拉力做的功就可用图中细窄的矩形面积表示,对这些矩形面积求和,就得到了由F和1 围成的三角形的面积,这块三角形的面积就表示拉力在整个过程中所做的功的大小 图2 ④画出弹力随形变量△的变化图线,图线与坐标轴所围的“面积”可表示弹力做功的大 ⑤弹性势能的大小E=F△l=k(△D2。 [典例精析] 【例1】如图3所示的几个运动过程中,物体的弹性势能增大的是() 兽置且 图3 A.如图甲,撑杆跳高的运动员上升至离杆的过程,杆的弹性势能 B.如图乙,人拉长弹簧的过程,弹簧的弹性势能
①如图 1 所示,弹簧的劲度系数为 k,左端固定,不加外力时,右端在 A 处,今用力 F 缓慢 向右拉弹簧,使弹簧伸长到 B 处,手克服弹簧弹力所做的功,其大小应该等于外力 F 对弹簧 所做的功,即弹簧增加的弹性势能。 图 1 ②求拉力做的功 将弹簧的形变过程分成很多小段,每一小段中近似认为拉力是不变的。所以,每一小段拉力 做的功分别为 W1=F1Δl1,W2=F2Δl2,W3=F3Δl3,…。拉力在整个过程中所做的功 W=W1+ W2+W3+…=F1Δl1+F2Δl2+F3Δl3+…。 ③计算求和式 类比匀变速直线运动中利用 vt 图象求位移,我们可以画出 Fl 图象,如图 2 所示。 每段拉力做的功就可用图中细窄的矩形面积表示,对这些矩形面积求和,就得到了由 F 和 l 围成的三角形的面积,这块三角形的面积就表示拉力在整个过程中所做的功的大小。 图 2 ④画出弹力随形变量 Δl 的变化图线,图线与坐标轴所围的“面积”可表示弹力做功的大 小。 ⑤弹性势能的大小 Ep= 1 2 FΔl= 1 2 k(Δl) 2。 [典 例 精 析] 【例 1】 如图 3 所示的几个运动过程中,物体的弹性势能增大的是( ) 图 3 A.如图甲,撑杆跳高的运动员上升至离杆的过程,杆的弹性势能 B.如图乙,人拉长弹簧的过程,弹簧的弹性势能
C.如图丙,模型飞机用橡皮筋发射出去的过程,橡皮筋的弹性势能 D.如图丁,小球被压缩弹簧向上弹起的过程,弹簧的弹性势能 解析选项A、C、D中物体的形变量均减小,所以弹性势能均减小,B中物体的形变量增大 所以弹性势能增加,故B正确。 答案B [即学即练] 1.关于弹簧的弹性势能,下列说法中正确的是() A.当弹簧变长时,它的弹性势能一定增大 B.当弹簧变短时,它的弹性势能一定变小 C.在拉伸长度相同时,k越大的弹簧,它的弹性势能越大 D.弹簧在拉伸时的弹性势能一定大于压缩时的弹性势能 解析弹性势能的大小,除了跟劲度系数k有关外,还跟它的形变量(拉伸和压缩的长度) 有关。如果弹簧处于压缩状态,当它变长时,它的弹性势能应该先减小,在原长处它的弹性 势能最小,所以C选项正确。 答案C 知识点二弹性势能与弹力做功之间的关系 [基础梳理 1.对弹性势能的理解 (1)系统性:弹性势能是发生弹性形变的物体上所有质点因相对位置改变而具有的能量,因 此弹性势能具有系统性 (2)相对性:弹性势能的大小与选定的零势能位置有关,对于弹簧,一般规定弹簧处于原长 时的势能为零势能 注意对于同一个弹簧,伸长和压缩相同的长度时,弹簧的弹性势能是相同的。 2.弹力做功与弹性势能变化的关系:W辨=二△E (1)弹力做正功,弹性势能减少,弹力做功的数值等于弹性势能的减少量 ②2)弹力做负功,弹性势能増加,弹力做功的数值等于弹性势能的増加量。 [典例精析] 【例2】弹簧原长l=15cm,受拉力作用后弹簧逐渐伸长,当弹簧伸长到L=20cm 作用在弹簧上的力为400N,问
C.如图丙,模型飞机用橡皮筋发射出去的过程,橡皮筋的弹性势能 D.如图丁,小球被压缩弹簧向上弹起的过程,弹簧的弹性势能 解析 选项 A、C、D 中物体的形变量均减小,所以弹性势能均减小,B 中物体的形变量增大, 所以弹性势能增加,故 B 正确。 答案 B [即 学 即 练] 1.关于弹簧的弹性势能,下列说法中正确的是( ) A.当弹簧变长时,它的弹性势能一定增大 B.当弹簧变短时,它的弹性势能一定变小 C.在拉伸长度相同时,k 越大的弹簧,它的弹性势能越大 D.弹簧在拉伸时的弹性势能一定大于压缩时的弹性势能 解析 弹性势能的大小,除了跟劲度系数 k 有关外,还跟它的形变量(拉伸和压缩的长度) 有关。如果弹簧处于压缩状态,当它变长时,它的弹性势能应该先减小,在原长处它的弹性 势能最小,所以 C 选项正确。 答案 C [基 础 梳 理] 1.对弹性势能的理解 (1)系统性:弹性势能是发生弹性形变的物体上所有质点因相对位置改变而具有的能量,因 此弹性势能具有系统性。 (2)相对性:弹性势能的大小与选定的零势能位置有关,对于弹簧,一般规定弹簧处于原长 时的势能为零势能。 注意 对于同一个弹簧,伸长和压缩相同的长度时,弹簧的弹性势能是相同的。 2.弹力做功与弹性势能变化的关系:W 弹=-ΔEp (1)弹力做正功,弹性势能减少,弹力做功的数值等于弹性势能的减少量。 (2)弹力做负功,弹性势能增加,弹力做功的数值等于弹性势能的增加量。 [典 例 精 析] 【例 2】 弹簧原长 L0=15 cm,受拉力作用后弹簧逐渐伸长,当弹簧伸长到 L1=20 cm 时, 作用在弹簧上的力为 400 N,问:
(1)弹簧的劲度系数k为多少? (2)在该过程中弹力做了多少功? (3)弹簧的弹性势能变化了多少? 解析(1)据胡克定律F=k得 FF IL1-lo0.20-0.15 2)根据F=kl,作出F图象如图所示。 0.05l/m 求出图中的阴影部分面积,即为弹力做功的绝对值 由于在弹簧伸长过程中弹力F的方向与位移l的方向相反,故弹力F在此过程中做负功,∥ ×0.05×400J=-10J。 (3)弹力F做负功,则弹簧弹性势能增加,且做功的多少等于弹性势能的变化量,ΔE=10J。 答案(1)8000N/m(2)-10J(3)10J [即学即练] 2.如图4所示,处于自然长度的轻质弹簧一端与墙接触,另一端与置于光滑地面上的物体接 触,现在物体上施加一水平推力F,使物体缓慢压缩弹簧,当推力F做功100J时,弹簧的 弹力做功 J,以弹簧处于自然长度时的弹性势能为零,则弹簧的弹性势能为 图4 答案-100100 知识点三重力势能与弹性势能的比较 [基础梳理] 物理量 弹性势能 重力势能 发生弹性形变的物体各部分之间由于弹被举高的物体由于相对地球的位置 定义 力的相互作用而具有的势能 发生变化而具有的势能
(1)弹簧的劲度系数 k 为多少? (2)在该过程中弹力做了多少功? (3)弹簧的弹性势能变化了多少? 解析 (1)据胡克定律 F=kl 得: k= F l = F L1-L0 = 400 0.20-0.15 N/m=8 000 N/m。 (2)根据 F=kl,作出 Fl 图象如图所示。 求出图中的阴影部分面积,即为弹力做功的绝对值, 由于在弹簧伸长过程中弹力 F 的方向与位移 l 的方向相反,故弹力 F 在此过程中做负功,W =- 1 2 ×0.05×400 J=-10 J。 (3)弹力 F 做负功,则弹簧弹性势能增加,且做功的多少等于弹性势能的变化量,ΔEp=10 J。 答案 (1)8 000 N/m (2)-10 J (3)10 J [即 学 即 练] 2.如图 4 所示,处于自然长度的轻质弹簧一端与墙接触,另一端与置于光滑地面上的物体接 触,现在物体上施加一水平推力 F,使物体缓慢压缩弹簧,当推力 F 做功 100 J 时,弹簧的 弹力做功________J,以弹簧处于自然长度时的弹性势能为零,则弹簧的弹性势能为 ________J。 图 4 答案 -100 100 [基 础 梳 理] 物理量 弹性势能 重力势能 定义 发生弹性形变的物体各部分之间由于弹 力的相互作用而具有的势能 被举高的物体由于相对地球的位置 发生变化而具有的势能
表达式 E=云kF E=mgh 弹性势能与零势能位置的选取有关,通常重力势能的大小与零势能参考面的 相对性选弹簧自然长度时,势能为零,表达式最选取有关,但变化量与参考面的选取 为简洁 无关 弹性势能是发生弹性形变的物体上所有重力势能是物体与地球这一系统所 系统性 质点所组成的系统共有的 共有的 功能 弹性势能的变化等于克服弹力所做的功重力势能的变化等于克服重力所做 关系 的功 两种势能分别以弹力、重力的存在为前提,又由物体的相对位置来决定,同属机 联系 械能的范畴,在一定条件下可相互转化 [典例精析] 【例3】如图5所示,质量不计的弹簧一端固定在地面上,弹簧竖直放置,将一小球从距 弹簧自由端高度分别为h、h2 的地方先后由静止释放,h>,小球接触到弹簧后向下运动压缩弹簧,从开始释放小球到获 得最大速度的过程中,小球重力势能的减少量ΔE、ΔE的关系及弹簧弹性势能的增加量 △E1、△E2的关系中,正确的一组是() 图5 A.△E=△E,△E1=△E B.ΔE>△E,△E=△E C.△E=△E,ΔE1>△E D.△E>△E,△Eu>△E2 解析速度最大的条件是弹力等于重力即kx=mg,即达到最大速度时,弹簧形变量x相同, 两种情况下,对应于同一位置,则△1=△E2,由于h>,所以△E>△E,B正确 答案B 课堂自测 反馈训练课堂达标 1.关于弹性势能,下列说法中正确的是()
表达式 Ep= 1 2 kl 2 Ep=mgh 相对性 弹性势能与零势能位置的选取有关,通常 选弹簧自然长度时,势能为零,表达式最 为简洁 重力势能的大小与零势能参考面的 选取有关,但变化量与参考面的选取 无关 系统性 弹性势能是发生弹性形变的物体上所有 质点所组成的系统共有的 重力势能是物体与地球这一系统所 共有的 功能 关系 弹性势能的变化等于克服弹力所做的功 重力势能的变化等于克服重力所做 的功 联系 两种势能分别以弹力、重力的存在为前提,又由物体的相对位置来决定,同属机 械能的范畴,在一定条件下可相互转化 [典 例 精 析] 【例 3】 如图 5 所示,质量不计的弹簧一端固定在地面上,弹簧竖直放置,将一小球从距 弹簧自由端高度分别为 h1、h2 的地方先后由静止释放,h1>h2,小球接触到弹簧后向下运动压缩弹簧,从开始释放小球到获 得最大速度的过程中,小球重力势能的减少量 ΔE1、ΔE2 的关系及弹簧弹性势能的增加量 ΔEp1、ΔEp2 的关系中,正确的一组是( ) 图 5 A.ΔE1=ΔE2,ΔEp1=ΔEp2 B.ΔE1>ΔE2,ΔEp1=ΔEp2 C.ΔE1=ΔE2,ΔEp1>ΔEp2 D.ΔE1>ΔE2,ΔEp1>ΔEp2 解析 速度最大的条件是弹力等于重力即 kx=mg,即达到最大速度时,弹簧形变量 x 相同, 两种情况下,对应于同一位置,则 ΔEp1=ΔEp2,由于 h1>h2,所以ΔE1>ΔE2,B 正确。 答案 B 1.关于弹性势能,下列说法中正确的是( )
A.发生弹性形变的物体,不一定具有弹性势能 B.任何具有弹性势能的物体,一定发生了弹性形变 C.物体只要发生形变,就一定具有弹性势能 D.弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关 解析发生弹性形变的物体的各部分之间,由于弹力作用而具有的势能,叫做弹性势能。任 何发生弹性形变的物体都具有弹性势能,任何具有弹性势能的物体一定发生了弹性形变,故 A错误,B正确:物体发生了形变,若是非弹性形变,无弹力作用,则物体就不具有弹性势 能,故C错误;弹簧的弹性势能除了跟弹簧被拉伸或压缩的长度有关外,还跟弹簧的劲度系 数有关,故D错误 答案B 2.如图6所示,一个物体以速度W冲向与竖直墙壁相连的轻质弹簧,墙壁和物体间的弹簧 被物体压缩,在此过程中以下说法正确的是() 图6 A.物体对弹簧做的功与弹簧的压缩量成正比 B.物体向墙壁运动相同的位移,弹力做的功相等 C.弹簧的弹力做正功,弹性势能增加 D.弹簧的弹力做负功,弹性势能增加 解析由功的计算公式∥= FIcos a知,恒力做功时,做功的多少与物体的位移成正比,而 弹簧对物体的弹力是一个变力,所以选项A错误;弹簧开始被压缩时弹力小,弹力做的功也 少,弹簧的压缩量变大时,物体移动相同的距离做的功多,故选项B错误:物体压缩弹簧的 过程,弹簧的弹力与弹力作用点的位移方向相反,所以弹力做负功,弹性势能增加,故选项 C错误,选项D正确。 答案D 3.如图7所示,小明玩蹦蹦杄,在小明将蹦蹦杆中的弹簧向下压缩的过程中,小明的重力势 能、弹簧的弹性势能的变化是()
A.发生弹性形变的物体,不一定具有弹性势能 B.任何具有弹性势能的物体,一定发生了弹性形变 C.物体只要发生形变,就一定具有弹性势能 D.弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关 解析 发生弹性形变的物体的各部分之间,由于弹力作用而具有的势能,叫做弹性势能。任 何发生弹性形变的物体都具有弹性势能,任何具有弹性势能的物体一定发生了弹性形变,故 A 错误,B 正确;物体发生了形变,若是非弹性形变,无弹力作用,则物体就不具有弹性势 能,故 C 错误;弹簧的弹性势能除了跟弹簧被拉伸或压缩的长度有关外,还跟弹簧的劲度系 数有关,故 D 错误。 答案 B 2.如图 6 所示,一个物体以速度 v0 冲向与竖直墙壁相连的轻质弹簧,墙壁和物体间的弹簧 被物体压缩,在此过程中以下说法正确的是( ) 图 6 A.物体对弹簧做的功与弹簧的压缩量成正比 B.物体向墙壁运动相同的位移,弹力做的功相等 C.弹簧的弹力做正功,弹性势能增加 D.弹簧的弹力做负功,弹性势能增加 解析 由功的计算公式 W=Flcos α 知,恒力做功时,做功的多少与物体的位移成正比,而 弹簧对物体的弹力是一个变力,所以选项 A 错误;弹簧开始被压缩时弹力小,弹力做的功也 少,弹簧的压缩量变大时,物体移动相同的距离做的功多,故选项 B 错误;物体压缩弹簧的 过程,弹簧的弹力与弹力作用点的位移方向相反,所以弹力做负功,弹性势能增加,故选项 C 错误,选项 D 正确。 答案 D 3.如图 7 所示,小明玩蹦蹦杆,在小明将蹦蹦杆中的弹簧向下压缩的过程中,小明的重力势 能、弹簧的弹性势能的变化是( )
图 A.重力势能减少,弹性势能增大 B.重力势能增大,弹性势能减少 C.重力势能减少,弹性势能减少 D.重力势能不变,弹性势能增大 解析弹簧向下压缩的过程中,弹簧压缩量增大,弹性势能增大;重力做正功,重力势能减 少,故A正确 答案A 4.一根弹簧的弹力F与伸长量x图象如图8所示,那么弹簧由伸长量8cm到伸长量4cm 的过程中,弹力做的功和弹性势能的变化量为() 图8 A.3.6J,-3.6J 3.6J,3.6J C.1.8J,-1.8J 1.8J,1.8J 解析图象中图线与x轴围成的“面积”表示弹力做的功,2×0×0J=号 ×0.04×30J=1.8J,此过程弹力做正功,弹簧的弹性势能减小1.8J,故只有C选项正 答案C 课时作业 随学随练巩固提升 1.下列物体具有弹性势能的是 A.下落的陨石 B.海上行驶的轮船 C.凹陷的橡皮泥 D.钟表中上紧的发条 解析钟表中上紧的发条,发条发生了弹性形变,具有弹性势能,其他物体没有弹性形变
图 7 A.重力势能减少,弹性势能增大 B.重力势能增大,弹性势能减少 C.重力势能减少,弹性势能减少 D.重力势能不变,弹性势能增大 解析 弹簧向下压缩的过程中,弹簧压缩量增大,弹性势能增大;重力做正功,重力势能减 少,故 A 正确。 答案 A 4.一根弹簧的弹力 F 与伸长量 x 图象如图 8 所示,那么弹簧由伸长量 8 cm 到伸长量 4 cm 的过程中,弹力做的功和弹性势能的变化量为( ) 图 8 A.3.6 J,-3.6 J .-3.6 J,3.6 J C.1.8 J,-1.8 J .-1.8 J,1.8 J 解析 Fx 图象中图线与 x 轴围成的“面积”表示弹力做的功。W= 1 2 ×0.08×60 J- 1 2 ×0.04×30 J=1.8 J,此过程弹力做正功,弹簧的弹性势能减小 1.8 J,故只有 C 选项正 确。 答案 C 1.下列物体具有弹性势能的是( ) A.下落的陨石 B.海上行驶的轮船 C.凹陷的橡皮泥 D.钟表中上紧的发条 解析 钟表中上紧的发条,发条发生了弹性形变,具有弹性势能,其他物体没有弹性形变
所以无弹性势能。选项D正确。 答案D 2.关于弹簧的弹性势能,下列说法中正确的是() A.当弹簧变长时,它的弹性势能一定增大 B.当弹簧变短时,它的弹性势能一定减小 若选弹簧自然长度时的弹性势能为0,则其他长度的弹性势能均为正值 D.若选弹簧自然长度时的弹性势能为0,则伸长时弹性势能为正值,压缩时弹性势能为负值 解析如果弹簧原来处在压缩状态,当它变长时,它的弹性势能应该减小,当它变短时,它 的弹性势能应该增大,在原长处它的弹性势能最小,A、B错误:;由于弹簧处于自然长度时 的弹性势能最小,若选弹簧自然长度时的弹性势能为0,则其他长度的弹性势能均为正值, C正确,D错误。 答案C 3.在光滑的水平面上,物体A以较大速度v向前运动,与以较小速度v向同一方向运动的 连有轻质弹簧的物体B发生相互作用,如图1所示。在相互作用的过程中,当系统的弹性势 能最大时( 图1 A v> Ve B V= Vb D.无法确定 解析弹簧的压缩量越大,弹性势能越大。当κ>v时,则弹簧压缩,弹性势能增大;当 时,A、B相距最近,弹簧压缩量最大,弹性势能最大;当κv时,弹簧伸长,弹簧的 弹性势能减小。 答案B 4.如图2所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上 在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中, 下列说法正确的是() 图2
所以无弹性势能。选项 D 正确。 答案 D 2.关于弹簧的弹性势能,下列说法中正确的是( ) A.当弹簧变长时,它的弹性势能一定增大 B.当弹簧变短时,它的弹性势能一定减小 C.若选弹簧自然长度时的弹性势能为 0,则其他长度的弹性势能均为正值 D.若选弹簧自然长度时的弹性势能为 0,则伸长时弹性势能为正值,压缩时弹性势能为负值 解析 如果弹簧原来处在压缩状态,当它变长时,它的弹性势能应该减小,当它变短时,它 的弹性势能应该增大,在原长处它的弹性势能最小,A、B 错误;由于弹簧处于自然长度时 的弹性势能最小,若选弹簧自然长度时的弹性势能为 0,则其他长度的弹性势能均为正值, C 正确,D 错误。 答案 C 3.在光滑的水平面上,物体 A 以较大速度 va向前运动,与以较小速度 vb向同一方向运动的、 连有轻质弹簧的物体 B 发生相互作用,如图 1 所示。在相互作用的过程中,当系统的弹性势 能最大时( ) 图 1 A.va>vb B.va=vb C.vavb时,则弹簧压缩,弹性势能增大;当 va =vb时,A、B 相距最近,弹簧压缩量最大,弹性势能最大;当 va<vb时,弹簧伸长,弹簧的 弹性势能减小。 答案 B 4.如图 2 所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上, 在力 F 作用下物体处于静止状态,当撤去 F 后,物体将向右运动,在物体向右运动的过程中, 下列说法正确的是( ) 图 2
A.弹簧的弹性势能逐渐减少 B.弹簧的弹性势能逐渐增加 C.弹簧的弹性势能先增加再减少 D.弹簧的弹性势能先减少再增加 解析当力F作用在物体上时,弹簧处于压缩状态,具有弹性势能,当撤去力F后,物体向 右运动。随着物体向右运动,弹簧的压缩量逐渐减小,弹性势能减少,当弹簧恢复原长时, 弹性势能为零,但物体的运动速度仍然向右,继续向右运动,弹簧被拉长,弹性势能增加, 所以选项D正确。 答案D 5.如图3所示,一个轻质弹簧竖直固定在地面上,将一个小球从距弹簧上端某高处由静止释 放,则在小球开始接触弹簧直到弹簧压缩到最短的过程中,以下判断正确的是() 图3 A.系统贮存的弹性势能不断减小 B.弹力对小球先做负功,后做正功 C.小球的重力势能始终逐渐减小 D.小球的重力势能先增大,后减小 解析小球从接触弹簧直到弹簧压缩到最短的过程中,受到重力(竖直向下)和弹簧的弹力 (竖直向上)作用,由于弹力的方向始终跟运动方向相反,所以弹力始终对小球做负功,而弹 簧的被压缩量越来越大,系统贮存的弹性势能也逐渐增大,所以选项A、B错误;小球高度 减小,故其重力势能减少,所以选项C正确而D错误。 答案C 6.如图4所示,将弹簧拉力器用力拉开的过程中,弹簧的弹力和弹性势能的变化情况是
A.弹簧的弹性势能逐渐减少 B.弹簧的弹性势能逐渐增加 C.弹簧的弹性势能先增加再减少 D.弹簧的弹性势能先减少再增加 解析 当力 F 作用在物体上时,弹簧处于压缩状态,具有弹性势能,当撤去力 F 后,物体向 右运动。随着物体向右运动,弹簧的压缩量逐渐减小,弹性势能减少,当弹簧恢复原长时, 弹性势能为零,但物体的运动速度仍然向右,继续向右运动,弹簧被拉长,弹性势能增加, 所以选项 D 正确。 答案 D 5.如图 3 所示,一个轻质弹簧竖直固定在地面上,将一个小球从距弹簧上端某高处由静止释 放,则在小球开始接触弹簧直到弹簧压缩到最短的过程中,以下判断正确的是( ) 图 3 A.系统贮存的弹性势能不断减小 B.弹力对小球先做负功,后做正功 C.小球的重力势能始终逐渐减小 D.小球的重力势能先增大,后减小 解析 小球从接触弹簧直到弹簧压缩到最短的过程中,受到重力(竖直向下)和弹簧的弹力 (竖直向上)作用,由于弹力的方向始终跟运动方向相反,所以弹力始终对小球做负功,而弹 簧的被压缩量越来越大,系统贮存的弹性势能也逐渐增大,所以选项 A、B 错误;小球高度 减小,故其重力势能减少,所以选项 C 正确而 D 错误。 答案 C 6.如图 4 所示,将弹簧拉力器用力拉开的过程中,弹簧的弹力和弹性势能的变化情况是 ( )
A.弹力变大,弹性势能变小 B.弹力变小,弹性势能变大 C.弹力和弹性势能都变小 D.弹力和弹性势能都变大 解析由F=kx知,当拉开弹簧拉力器时,伸长量x增大,故弹力和弹性势能都增大 答案D 7.(多选)如图5所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同 一水平面且使弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在重物由 A点摆向最低点B的过程中() C0000000OA 图5 A.重力做正功,弹力不做功 B.重力做正功,弹力做负功,弹性势能增加 C.若用与弹簧原长相等的细绳代替弹簧后,重力做正功,弹力不做功 D.若用与弹簧原长相等的细绳代替弹簧后,重力做功不变,弹力不做功 解析用细绳拴住小球向下摆动时重力做正功,弹力不做功,C正确;用弹簧拴住小球下摆 忖,弹簧要伸长,小球轨迹不是圆弧,弹力做负功,弹性势能增加,重力做正功,所以A、 D错误,B正确 答案 8.(多选)如图6所示,弹簧的一端固定在墙上,另一端在水平力F作用下缓慢拉伸了x。关 于拉力F、弹性势能E随伸长量x的变化图象正确的是() 图6
图 4 A.弹力变大,弹性势能变小 B.弹力变小,弹性势能变大 C.弹力和弹性势能都变小 D.弹力和弹性势能都变大 解析 由 F=kx 知,当拉开弹簧拉力器时,伸长量 x 增大,故弹力和弹性势能都增大。 答案 D 7.(多选)如图 5 所示,一轻弹簧一端固定于 O 点,另一端系一重物,将重物从与悬点 O 在同 一水平面且使弹簧保持原长的 A 点无初速地释放,让它自由摆下,不计空气阻力,在重物由 A 点摆向最低点 B 的过程中( ) 图 5 A.重力做正功,弹力不做功 B.重力做正功,弹力做负功,弹性势能增加 C.若用与弹簧原长相等的细绳代替弹簧后,重力做正功,弹力不做功 D.若用与弹簧原长相等的细绳代替弹簧后,重力做功不变,弹力不做功 解析 用细绳拴住小球向下摆动时重力做正功,弹力不做功,C 正确;用弹簧拴住小球下摆 动时,弹簧要伸长,小球轨迹不是圆弧,弹力做负功,弹性势能增加,重力做正功,所以 A、 D 错误,B 正确。 答案 BC 8.(多选)如图 6 所示,弹簧的一端固定在墙上,另一端在水平力 F 作用下缓慢拉伸了 x。关 于拉力 F、弹性势能 Ep 随伸长量 x 的变化图象正确的是( ) 图 6