当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier

资源类别:文库,文档格式:PDF,文档页数:63,文件大小:15.78MB,团购合买
• Problem Setup • Multi-Armed Bandits • Bandit Convex Optimization • Advanced Topics
点击下载完整版文档(PDF)

版像 NJUAT 南京大学 人工智能学院 SCHODL OF ARTIFICIAL INTELUGENCE,NANJING UNIVERSITY Lecture 11.Adversarial Bandits Advanced Optimization(Fall 2023) Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University

Lecture 11. Adversarial Bandits Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University Advanced Optimization (Fall 2023)

Outline 。Problem Setup ·Multi-Armed Bandits Bandit Convex Optimization ·Advanced Topics Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 2

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 2 Outline • Problem Setup • Multi-Armed Bandits • Bandit Convex Optimization • Advanced Topics

Online Convex Optimization At each round t=1,2,... (1)the player first picks a model xt from aconvex set cRd (2)and environments pick an online convex functionf:->R; (3)the player suffers loss fi(xt),observes some information about fi and updates the model. Problem Domain Online Functions General OCO convex set t'cRd convex function fi() OCO with Strongly Convex Functions convex set tc Rd V2fi(x)=aI OCO with Exp-concave Functions convex set t'C Rd V2f(x)≥BVf(x)Vf(x)T Prediction with Experts'Advice △4={x∈R+∑1,=1 f(x)=(,x) Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 3

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 3 Online Convex Optimization

OCO Algorithms learned so far Given first-order information oracle:worst-case bound Online Mirror Descent =arg minxex if()() where D(x,y)=(x)-(y)-(Vu(y),x-y)is the Bregman divergence. T ∑(x)-∑f画 t=1 t=1 +(m-nux)-a T t=1 Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 4

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 4 Online Mirror Descent OCO Algorithms learned so far • Given first-order information oracle: worst-case bound

OCO Algorithms learned so far Given first-order information oracle:worst-case bound Algo. OMD/proximal form () nt RegretT OGD for x+=arg min ne(x,Vfe(x)) llxll O(VT) convex XEX OGD for strongly c. X1=argin,7fx》+Ix-x Ilxll 品 O(logT) x∈X ONS for exp-concave +1=arg min m(x Vf() Ixl O(4logT) Hedge for N In N PEA x:+1=arg min m (x,Vfi(x))+KL(xx) cilog xi m O(VTlog N) xE△N =1 Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 5

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 5 OCO Algorithms learned so far • Given first-order information oracle: worst-case bound OGD for convex OGD for strongly c. ONS for exp-concave Hedge for PEA Algo. OMD/proximal form

OCO Algorithms learned so far Given first-order information oracle:problem-dedependent bound Optimistic Online Mirror Descent x=arg minxex m(M+Du(x) =arg minxex in (f(x),x)+Du(x) T T -w aN-E+(e,a刻-nu)-(aR心+n,K刘 T Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 6

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 6 Optimistic Online Mirror Descent OCO Algorithms learned so far • Given first-order information oracle: problem-dedependent bound

OCO Algorithms learned so far Given first-order information oracle:problem-dedependent bound Assumption(s) Setting of Setting of nt Problem-dependent Optimism Regret Bound Small-loss L-Smooth+ Bound Non-negative M:=0 ≈鼎a (v1+F) Variance D 一 Bound M=t-1 V1+Var:-1 (1+Var Variation D L-Smooth Bound M:=Vf-1(xt-1) V1+V- O(1+) Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 7

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 7 OCO Algorithms learned so far • Given first-order information oracle: problem-dedependent bound Assumption(s) Setting of Optimism Problem-dependent Regret Bound Small-loss Bound L-Smooth + Non-negative Variance Bound — Variation Bound L-Smooth

Online Convex Optimization At each round t=1,2,... (1)the player first picks a model x from aconvex set (2)and environments pick an online convex functionf:-R; (3)the player suffers loss fi(xt),observes some information about fr and updates the model. on the feedback information: full information partial information -full information:observe entire f(or at least gradient Vf(x)) 8B88 partial information (bandits):observe function value fi(xt)only less information horse racing multi-armed bandits Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 8

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 8 Online Convex Optimization less information full information horse racing partial information multi-armed bandits on the feedback information:

Multi-Armed Bandit Trial 1 Trial 2 Trial3 Loss:0.3 Loss:0.2 Loss:0.5 Arms 日日 chosen arm unobserved Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 9

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 9 Multi-Armed Bandit Trial 1 Trial 2 Trial 3 Loss: 0.3 * Loss: 0.2 * Loss: 0.5 * * * * * * * Arms : chosen arm : unobserved

Formulation At each round t=1,2,... (1)the player first picks an arm atE[K]from K candidate arms; (2)and simultaneously environments pick a loss vector eE[0,1]K; (3)the player suffers and only observes loss et.a,,then updates the model. on the difficulty of environments: ●adversarial setting -oblivious:{e are chosen before the game starts. -non-oblivious:(a,.1,1.)can depend on the past history. .stochastic settingD,where Dis a fixed unknown distribution. Advanced Optimization(Fall 2023) Lecture 11.Adversarial Bandits 10

Advanced Optimization (Fall 2023) Lecture 11. Adversarial Bandits 10 Formulation on the difficulty of environments:

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共63页,可试读20页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有