《管理运筹学》课程教学大纲 一、课程基本信息 课程代码:16159903 课程名称:管理运筹学 英文名称:Management Operations Resrarch 课程类别:专业课 学时:48 学分:3 适用对象:电子商务、信息管理与信息系统、大数据管理与应用等本科专业 考核方式:考试 先修课程:管理学、西方经济学、线性代数、概率论与数理统计 二、课程简介 中文简介: 管理运筹学课程是近几十年发展起来的一门新兴学科,是管理科学和现代化 管理方法的重要组成部分,主要运用数学方法研究各种系统的优化途径和方案, 为决策者选择最优决策提供定量依据。本课程系统介绍线性规划、运输问题、整 数规划、目标规划、动态规划、图论及其应用、排队论及决策分析等的基本概念、 基本原理和基本方法。着重从实例入手建立数学模型,探讨一些经济管理中比较 实用的数学模型和方法。培养学生基于实际问题建立数学模型、求解模型、分析 模型解的结果并进行经济评价的能力。 英文简介: As an important component of management sciences and modern management methods,operations research for management being a new and developing course in recent decades,makes researches on optimizing approaches and schedules of all kinds of systems by applying mathematical methods,so as to supply quantitative accordance for decision-makers choosing optimum decision.The course introduces fundamental concepts,principles and methods of linear programming transportation problem,integer programming,goal programming,graph theory and its applications,queuing theory and decision analysis.On the basis of emphasizing on establishing mathematical model according to realistic examples,some practical 1
1 《管理运筹学》课程教学大纲 一、课程基本信息 课程代码:16159903 课程名称:管理运筹学 英文名称:Management Operations Resrarch 课程类别:专业课 学时:48 学 分:3 适用对象:电子商务、信息管理与信息系统、大数据管理与应用等本科专业 考核方式:考试 先修课程:管理学、西方经济学、线性代数、概率论与数理统计 二、课程简介 中文简介: 管理运筹学课程是近几十年发展起来的一门新兴学科,是管理科学和现代化 管理方法的重要组成部分,主要运用数学方法研究各种系统的优化途径和方案, 为决策者选择最优决策提供定量依据。本课程系统介绍线性规划、运输问题、整 数规划、目标规划、动态规划、图论及其应用、排队论及决策分析等的基本概念、 基本原理和基本方法。着重从实例入手建立数学模型,探讨一些经济管理中比较 实用的数学模型和方法。培养学生基于实际问题建立数学模型、求解模型、分析 模型解的结果并进行经济评价的能力。 英文简介: As an important component of management sciences and modern management methods, operations research for management being a new and developing course in recent decades, makes researches on optimizing approaches and schedules of all kinds of systems by applying mathematical methods, so as to supply quantitative accordance for decision-makers choosing optimum decision. The course introduces fundamental concepts, principles and methods of linear programming, transportation problem, integer programming, goal programming, graph theory and its applications, queuing theory and decision analysis. On the basis of emphasizing on establishing mathematical model according to realistic examples, some practical
mathematical models and methods in economics and management fields are discussed.Thus,the ability for students of establishing models,solving models, analyzing model solutions and making economic evaluation are cultivated based on practical problems. 三、课程性质与教学目的 课程性质:专业选修课 教学目的:通过本课程的学习,使学生能够理解和掌握管理运筹学的基本概 念、基本原理和基本方法,同时具备基于实际问题建立数学模型、求解模型、分 析模型解的结果并进行经济评价的能力,从而为今后其它专业课程的学习以及解 决实际问题奠定扎实的理论基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 3.理解管理运筹学模型: 4.理解管理决策的定性方法和定量方法: 5.掌握管理运筹学的工作步骤,了解其未来发展趋势。 6.运筹学在中国的起源及对世界的贡献 (二)教学内容 第一节管理运筹学简史 1.主要内容 运筹学(Operations Research or Operational Research,缩写OR)是近 几十年来才逐步发展起来的一门新兴学科,最早是由于军事上的需要而产生的。 到利1049任 ,英国的陆、 ”空三军都正式建立了 OR组织 专门研究各种新式武 器如何有效使用新问题。第 次世界 大战结束后,由于经营管理中的许多问题利 战争中所碰到的问题极为相似,于是运筹学的研究方法及其理论很快深入到工业 生产部门和商业部门。 我国从1956年起开始了对运筹学的研究与应用。1958年分别在中国科学院 力学研究所、数学研究所成立了两个运筹学研究室,1960年两个运筹学研究室 会并那在运算 在我国经济管 理领域得到, 泛的应用,运筹学的研 也日 益受到政府部门和企业的重视,因而使我国在运筹学的某些研究分支上已达到世 界水平。钱学森、华罗庚、许国志、刘源张等老一辈数学家致力于在中国推广运 筹学,为运筹学的普及和深入开展作出了不可磨灭的贡献。 运筹学的中国邮递员问题。 2.基本概念和知识点:运筹学 3.问题与应用(能力要求):什么是运筹学?运筹学的起源?运筹学在我国 的引入和发展?
2 mathematical models and methods in economics and management fields are discussed. Thus, the ability for students of establishing models, solving models, analyzing model solutions and making economic evaluation are cultivated based on practical problems. 三、课程性质与教学目的 课程性质:专业选修课 教学目的:通过本课程的学习,使学生能够理解和掌握管理运筹学的基本概 念、基本原理和基本方法,同时具备基于实际问题建立数学模型、求解模型、分 析模型解的结果并进行经济评价的能力,从而为今后其它专业课程的学习以及解 决实际问题奠定扎实的理论基础。 四、教学内容及要求 第一章 绪 论 (一)目的与要求 1.了解管理运筹学的发展历史; 2.了解管理运筹学的研究对象与特征; 3.理解管理运筹学模型; 4.理解管理决策的定性方法和定量方法; 5.掌握管理运筹学的工作步骤,了解其未来发展趋势。 6.运筹学在中国的起源及对世界的贡献 (二)教学内容 第一节 管理运筹学简史 1.主要内容 运筹学(Operations Research or Operational Research,缩写 OR)是近 几十年来才逐步发展起来的一门新兴学科,最早是由于军事上的需要而产生的。 到 1942 年,英国的陆、海、空三军都正式建立了 OR 组织,专门研究各种新式武 器如何有效使用新问题。第二次世界大战结束后,由于经营管理中的许多问题和 战争中所碰到的问题极为相似,于是运筹学的研究方法及其理论很快深入到工业 生产部门和商业部门。 我国从 1956 年起开始了对运筹学的研究与应用。1958 年分别在中国科学院 力学研究所、数学研究所成立了两个运筹学研究室,1960 年两个运筹学研究室 合并。现在,运筹学已在我国经济管理领域得到广泛的应用,运筹学的研究也日 益受到政府部门和企业的重视,因而使我国在运筹学的某些研究分支上已达到世 界水平。钱学森、华罗庚、许国志、刘源张等老一辈数学家致力于在中国推广运 筹学,为运筹学的普及和深入开展作出了不可磨灭的贡献。 运筹学的中国邮递员问题。 2.基本概念和知识点:运筹学 3.问题与应用(能力要求):什么是运筹学?运筹学的起源?运筹学在我国 的引入和发展?
第二节管理运筹学的研究对象与特征 1.主要内容 管埋云第学是用定最化方法来为管理冲管提仕定品依混的一门学科。管理云 筹学把复杂的管理系统归结为数学模型,然后使用数学方法和计算机求解与分 析,从而得到系统最优运行方案,供管理人员和决策人员参考。 管理运筹学的研究对象是各种有组织的系统(主要是经济组织系统)的经营 管理问题,该系统是在一定时空条件下存在:为人所能控制和操纵,有两个以上 行动方案可供抉择而需要人们作决策的系统」 管理运筹学具有如下 主要特征 管理运筹学研究和解决问题的基础是最优化技术,并强调系统整体最优: 管理运筹学研究和解决问题的优势是应用各学科交叉的方法,具有综合性: 管理运筹学的方法具有显著的系统特征,其各种方法的运用,几乎都需要建 立数学模型和利用计算机进行求解: 管理运筹学的效果具有连续性 ,即具有动态性 管理运筹学具有强烈的实践性和应用的广泛性。 2.基本概念和知识点:运筹学的研究对象 3.问题与应用(能力要求):运筹学与最优化科学的关系? 第三节管理运筹学模型 1.主要内容 管理运筹学中所使用的数学模型,一般由决策变量、约束条件或限制条件以 及目标函数所构成,其实质表现为在约束条件允许的范围内,寻找目标函数的最 优解。即其数学模型的一般形式为: ax(min)Z=f(x,2,,xn): s.t. g,(x,x2,…,x)≤(或=,或2)0,i=1,2,…,m h,(1,x2,…,xn)=0j=1,2,…,1 其中xU=2,…,m为决策变量,Z为目标函数,g,(x,,x)≤0和 h,(x1,x2,…,xn)=0为约束条件。 针对实际问颗所律立的管理运筹学模型,一般应满足两个基本要求:一是要 能完整地描述所研究的系统,以便能代替现实供我们分析研究:二是要在适合所 研究问题的前提下,模型应尽量简单。 2.基本概念和知识点:决策变量:目标函数:约束条件 3.问题与应用(能力要求):运筹学的一般数学模型 第四节管理运筹学的研究步骤及其展望 1.主要内容 3
3 第二节 管理运筹学的研究对象与特征 1.主要内容 管理运筹学是用定量化方法来为管理决策提供定量依据的一门学科。管理运 筹学把复杂的管理系统归结为数学模型,然后使用数学方法和计算机求解与分 析,从而得到系统最优运行方案,供管理人员和决策人员参考。 管理运筹学的研究对象是各种有组织的系统(主要是经济组织系统)的经营 管理问题,该系统是在一定时空条件下存在;为人所能控制和操纵,有两个以上 行动方案可供抉择而需要人们作决策的系统。 管理运筹学具有如下一些主要特征: 管理运筹学研究和解决问题的基础是最优化技术,并强调系统整体最优; 管理运筹学研究和解决问题的优势是应用各学科交叉的方法,具有综合性; 管理运筹学的方法具有显著的系统特征,其各种方法的运用,几乎都需要建 立数学模型和利用计算机进行求解; 管理运筹学的效果具有连续性,即具有动态性; 管理运筹学具有强烈的实践性和应用的广泛性。 2.基本概念和知识点:运筹学的研究对象 3.问题与应用(能力要求):运筹学与最优化科学的关系? 第三节 管理运筹学模型 1.主要内容 管理运筹学中所使用的数学模型,一般由决策变量、约束条件或限制条件以 及目标函数所构成,其实质表现为在约束条件允许的范围内,寻找目标函数的最 优解。即其数学模型的一般形式为: max(min) ( , , , ) 1 2 n Z = f x x x ; s.t. = = = h x x x j l g x x x i m j n i n ( , , , ) 0, 1,2, , ( , , , ) ( )0 1,2, , ; 1 2 1 2 或=,或 , 其 中 x ( j 1,2, ,n) j = 为决策变量, Z 为 目 标 函 数 , gi (x1 , x2 , , xn ) 0 和 hj (x1 , x2 , , xn ) = 0 为约束条件。 针对实际问题所建立的管理运筹学模型,一般应满足两个基本要求:一是要 能完整地描述所研究的系统,以便能代替现实供我们分析研究;二是要在适合所 研究问题的前提下,模型应尽量简单。 2.基本概念和知识点:决策变量;目标函数;约束条件 3.问题与应用(能力要求):运筹学的一般数学模型 第四节 管理运筹学的研究步骤及其展望 1.主要内容
应用管理运筹学的方法来研究实际问题时,首先要求用系统观点来分析问 题,即不仅要求提出需要解决的问题和希望达到的目标,而且还要弄清问题所处 的环境和约束条件, 从而建立相应的管理运筹学模型,以 找问题的最优解,为 决策提供定量依据。管理运筹学的研究步骤主要分为以下几步: (1)提出问题。提出需要解决的问题: (2)收集资料。根据要解决的问题收集相应的基础资料: (3)建立模型。用数学语言描述问题,即选用适当的数学方法建立相应的 数学模型。 (4)求解。用相应的运筹学算法求出所建模型的解: (5)解的检验。首先检验解在理论上是否正确,其次检验解是否反映现实 问题: (6)解的实施。向决策者提供决策所需要的数据和决簧方案,并付者实施 运筹学是一门独立的新兴学科,它的发展与社会科学、技术科学和军事科学 的发展紧密相关,已成为 项工程与管理学科不可缺少的基础鳄 。它的方法和 实践己在管理科学、社会经济、工程技术和军事决策等方面起着主要的作用并已 产生巨大的经济效益和社会效益。运筹学同其他自然科学和人文科学的交叉,便 形成了如,计算运筹学、工程技术运筹学和管理运筹学等。 2.基本概念和知识点:模型:模型的解 3.问题与应用(能力要求):运筹学建模过程 (二)思老与实践 什么是定量方法?什么是定性方法?两者的区别和联系? 运筹学模型的基本要素有哪些 运筹学的起源和发展?运筹学在我国的起源和发展? (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第二章线性规划 (一)目的与要求 1.掌握线性规划的数学模型及建模步骤。 2.掌握线性规划的图解法。 认识线性趣别的标准刑及堂据怯化为标准刑的方法 4.掌握单纯形法与单纯形表掌握人工变量方法的使用 5.掌握线性规划在经济管理中的一些常见应用实例。 6.我国导弹领域的长足进步以及运筹学的贡献 (二)教学内容 第一节线性规划模型 1.主要内容 在生产实践中,常常会遇到两类优化问题:如何运用现有的资源(如人力 机器、原材料等)安排生产,使产值最大或利润最高:或者,对于给定的任务, 如何统筹安排以便消耗最少的资源。线性规划是用来解决这类问题常见的方法, 而建立线性规划数学模型则是用线性规划解决问题时最基本的步骤。 2.基本概念和知识点 )决策变量:决策变量是模型要决定的未知量,即决策者采用的模型所 规定的抉择方案。确定合适的决策变量是能否成功地建立数学模型的关键
4 应用管理运筹学的方法来研究实际问题时,首先要求用系统观点来分析问 题,即不仅要求提出需要解决的问题和希望达到的目标,而且还要弄清问题所处 的环境和约束条件,从而建立相应的管理运筹学模型,以寻找问题的最优解,为 决策提供定量依据。管理运筹学的研究步骤主要分为以下几步: (1)提出问题。提出需要解决的问题; (2)收集资料。根据要解决的问题收集相应的基础资料; (3)建立模型。用数学语言描述问题,即选用适当的数学方法建立相应的 数学模型; (4)求解。用相应的运筹学算法求出所建模型的解; (5)解的检验。首先检验解在理论上是否正确,其次检验解是否反映现实 问题; (6)解的实施。向决策者提供决策所需要的数据和决策方案,并付诸实施。 运筹学是一门独立的新兴学科,它的发展与社会科学、技术科学和军事科学 的发展紧密相关,已成为一项工程与管理学科不可缺少的基础学科。它的方法和 实践已在管理科学、社会经济、工程技术和军事决策等方面起着主要的作用并已 产生巨大的经济效益和社会效益。运筹学同其他自然科学和人文科学的交叉,便 形成了如,计算运筹学、工程技术运筹学和管理运筹学等。 2.基本概念和知识点:模型;模型的解 3.问题与应用(能力要求):运筹学建模过程 (三)思考与实践 什么是定量方法?什么是定性方法?两者的区别和联系? 运筹学模型的基本要素有哪些? 运筹学的起源和发展?运筹学在我国的起源和发展? (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第二章 线性规划 (一)目的与要求 1.掌握线性规划的数学模型及建模步骤。 2.掌握线性规划的图解法。 3.认识线性规划的标准型及掌握转化为标准型的方法。 4.掌握单纯形法与单纯形表;掌握人工变量方法的使用。 5.掌握线性规划在经济管理中的一些常见应用实例。 6.我国导弹领域的长足进步以及运筹学的贡献 (二)教学内容 第一节 线性规划模型 1.主要内容 在生产实践中,常常会遇到两类优化问题:如何运用现有的资源(如人力、 机器、原材料等)安排生产,使产值最大或利润最高;或者,对于给定的任务, 如何统筹安排以便消耗最少的资源。线性规划是用来解决这类问题常见的方法, 而建立线性规划数学模型则是用线性规划解决问题时最基本的步骤。 2.基本概念和知识点 (1)决策变量:决策变量是模型要决定的未知量,即决策者采用的模型所 规定的抉择方案。确定合适的决策变量是能否成功地建立数学模型的关键
(2)目标函数:将决策者所追求的目标表示为决策变量的函数。 (3)约束条件:约束条件可用决策变量的等式或不等式来表示。 3问题与应用 ()如何理解线性规划的建模原理? (2)基于实际问题如何建立线性规划模型? 第二节线性规别模型的标准型 1主要内空 由于线性规划模型的目标函数和约束条件内容和形式上的差别,使线性规划 模型的具体形式往往很不一致。为了便于统一处理,有必要规定线性规划模型的 标准形式。 2.基本概念和知识点 (1)最小化问题的转化。求minZ等价于求max(-Z),因此,只需改变目 标函数的符号就可以实现最大化和最小化之间的转接 (2 不等约束的处理。不等式约束可以通过引入松驰变量或剩余变量化 为等式约束。 (3)非正变量与符号无限制变量(无约束变量)的处理。 3.问题与应用 (1)如何理解线性规划模型的标准形式? (2)面对具体的线性规划模型如何转化为标准形式? 第三节线性规划的图解法 1.主要内容 当一个线性规划模型只含两个变量时,可以通过在平面上作图的方法来求 解。这种方法的优点是直观性强,计算方便,但缺点是只适用于有两个变量的情 形。 2.基本概念和知识点 (1)图解法的解题步骤 在平面上律立直角坐标:图示约束条件,找出可行域:作出目标函数 寻找最优解。 (2)线性规划问题求解的几种可能结果 唯一解;多重解:无界解;无可行解。 3.问题与应用 (1)对于一个有两个变量的线性规划问题如何运用图解法求解? 第四节线性规划的单纯形算法 1.主要内容 单纯形算法是Dantzig于1947年提出来的,五十多年来,它一直是求解线 性规划最有效的方法之一 2.基本概念和知识点 (1) 可行解、最优解、基、基变量、非基变量、基解、基可行解等概念。 (2)单纯形算法的基本原理 (3)最优性检验与解的判别。 (4)单纯形列表算法。 5
5 (2)目标函数:将决策者所追求的目标表示为决策变量的函数。 (3)约束条件:约束条件可用决策变量的等式或不等式来表示。 3.问题与应用 (1)如何理解线性规划的建模原理? (2)基于实际问题如何建立线性规划模型? 第二节 线性规划模型的标准型 1.主要内容 由于线性规划模型的目标函数和约束条件内容和形式上的差别,使线性规划 模型的具体形式往往很不一致。为了便于统一处理,有必要规定线性规划模型的 标准形式。 2.基本概念和知识点 (1)最小化问题的转化。求 minZ 等价于求 max(-Z),因此,只需改变目 标函数的符号就可以实现最大化和最小化之间的转换。 (2)不等约束的处理。不等式约束可以通过引入松驰变量或剩余变量化 为等式约束。 (3)非正变量与符号无限制变量(无约束变量)的处理。 3.问题与应用 (1)如何理解线性规划模型的标准形式? (2)面对具体的线性规划模型如何转化为标准形式? 第三节 线性规划的图解法 1.主要内容 当一个线性规划模型只含两个变量时,可以通过在平面上作图的方法来求 解。这种方法的优点是直观性强,计算方便,但缺点是只适用于有两个变量的情 形。 2.基本概念和知识点 (1)图解法的解题步骤 在平面上建立直角坐标;图示约束条件,找出可行域;作出目标函数; 寻找最优解。 (2)线性规划问题求解的几种可能结果 唯一解;多重解;无界解;无可行解。 3.问题与应用 (1)对于一个有两个变量的线性规划问题如何运用图解法求解? 第四节 线性规划的单纯形算法 1.主要内容 单纯形算法是 DantZig 于 1947 年提出来的,五十多年来,它一直是求解线 性规划最有效的方法之一。 2.基本概念和知识点 (1)可行解、最优解、基、基变量、非基变量、基解、基可行解等概念。 (2)单纯形算法的基本原理。 (3)最优性检验与解的判别。 (4)单纯形列表算法
3.问题与应用 (2) 第五节大M法一一一种人工变量法 1.主要内容 一般地,许多线性规划问题化为标准形后,其约束方程组的系数矩阵不一定 含有m阶单位矩阵。这时 可采用人造基方法,即对不等式约 个非负 的剩余变量后,再加上 个非负的人工变量:对于等式约束直接加上一个非负的 人工变量,总能得到一个单位矩阵,即为人工变量法。 2.基本概念和知识点 (1)虑拟变量 (2)大M法 3.问题与应用 (1)如何理解虚拟变量? (2)堂握大M法。 第六节案例分析(线性规划在经济管理中的应用) 1主要内为 任何 一个经济系统,为了进行自己的经济活动,都拥有一定的资源,如人力 物质、设备、资金、工时等。经济管理工作的根本任务就在于科学地组织各项经 济活动,以使这些资源得到最充分的利用,从而取得最大的经济效益。经济活动 所涉及的范围很广,如经营规划的制订,生产规划的安排,原材料的利用、投资 的安排,库存的控制等等。所有这些经济管理活动 都存在一个合理使用资源 以提高经济效益的问题,即存在 个官理优 化向题 是在现有资源条件下,当 生产任务具有一定灵活性时,问如何合理安排,以保证生产任务的完成,又能最 大限度地实现某一预期目的(如产值最大或利润最高)?二是为了完成一定的任 务,问怎样进行组织,才能使资源的消耗为最少? 导弹的可靠性评价问题,给研制工作带来巨大的挑战。按照传统的数理统计 需要抽取30-100个样本 实验, 但是这显然不可能 代价太大 。七机部要求最 多2次,周总理要求万无一失(可靠性99.99%)。现在,样本数N=2,属于于小 本,经过系统科学工作者的研究,确定了如下方法:实验分两个阶段,冷试验在 地面进行,各个零部件分别进行试验,如发动机等。热试验分为局部点火,全弹 上天。为检验效果,向太平洋发射两颗,花了3-4亿人民币。目标:在太平洋特 定区域按照合格与不合格划分成内框和外框。内框合格 外框不合格。只有第 发在内框内,才发射第二发。经过检验,平均只要1.2发,就可以检测出导弹的 可靠性,减少了0.8发。 2.基本概念和知识点 (1)合理下料问颜 (2)配料间颗」 (5)外购合同问题。 (6)广告方式的选择问题
6 3.问题与应用 (1)如何理解单纯形算法的基本原理和基本概念? (2)如何掌握单纯形列表算法? 第五节 大 M 法——一种人工变量法 1.主要内容 一般地,许多线性规划问题化为标准形后,其约束方程组的系数矩阵不一定 含有 m 阶单位矩阵。这时,可采用人造基方法,即对不等式约束减去一个非负 的剩余变量后,再加上一个非负的人工变量;对于等式约束直接加上一个非负的 人工变量,总能得到一个单位矩阵,即为人工变量法。 2.基本概念和知识点 (1)虚拟变量。 (2)大 M 法。 3.问题与应用 (1)如何理解虚拟变量? (2)掌握大 M 法。 第六节 案例分析(线性规划在经济管理中的应用) 1.主要内容 任何一个经济系统,为了进行自己的经济活动,都拥有一定的资源,如人力、 物质、设备、资金、工时等。经济管理工作的根本任务就在于科学地组织各项经 济活动,以便这些资源得到最充分的利用,从而取得最大的经济效益。经济活动 所涉及的范围很广,如经营规划的制订,生产规划的安排,原材料的利用、投资 的安排,库存的控制等等。所有这些经济管理活动,都存在一个合理使用资源, 以提高经济效益的问题,即存在一个管理优化问题:一是在现有资源条件下,当 生产任务具有一定灵活性时,问如何合理安排,以保证生产任务的完成,又能最 大限度地实现某一预期目的(如产值最大或利润最高)?二是为了完成一定的任 务,问怎样进行组织,才能使资源的消耗为最少? 导弹的可靠性评价问题,给研制工作带来巨大的挑战。按照传统的数理统计, 需要抽取 30-100 个样本做实验,但是这显然不可能,代价太大。七机部要求最 多 2 次,周总理要求万无一失(可靠性 99.99%)。现在,样本数 N=2,属于小样 本,经过系统科学工作者的研究,确定了如下方法:实验分两个阶段,冷试验在 地面进行,各个零部件分别进行试验,如发动机等。热试验分为局部点火,全弹 上天。为检验效果,向太平洋发射两颗,花了 3-4 亿人民币。目标:在太平洋特 定区域按照合格与不合格划分成内框和外框。内框合格,外框不合格。只有第一 发在内框内,才发射第二发。经过检验,平均只要 1.2 发,就可以检测出导弹的 可靠性,减少了 0.8 发。 2.基本概念和知识点 (1)合理下料问题。 (2)配料问题。 (3)投资问题。 (4)任务安排问题。 (5)外购合同问题。 (6)广告方式的选择问题
(7)有价证券的选择问题。 (8)环境保护问题。 3.间题与应用 根据实际问题 如何建立线性规划模型? (2)如何将线性规划模型解的数学语言转化为管理语言? (一)思考与实践 什么是线性规制?如何理解线性规划的数学模型? 单纯型法的两种检验及算法步骤? (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第三章运输问题 (一)目的与要求 输问题的数学模型 2握求解运输问题的表上作业法 3.能把产销不平衡问题转化为产销平衡问题。 4.掌握运输模型的若干实标应用例子。 5.我国物流的发展及运输问题的应用。 (二)教学内容 第一节运输问题的建模 1.主要内容: 运输问题的数学模型:运输问题数学模型的特点。 2.基本概念和知识点 (1 产销平衡运输问题的数学模型 (2)产销不平衡运输问题 (3)运输问题的特殊性 约束条件系数矩阵元素等于0或1:约束条件系数矩阵的每一列有两个非零 还有以下特点:所有结构约束条件都是 等式约束:各产地产量之和等于各销地销量之和。 (4)我国物流产业的长足进步 运输问题在提升物流效率方面的案例分析。 3.问题与应用 (1)如何理解运输问题的含义? (2)运输问题模型的特点有哪些? 第二节平衡运输问题的表上作业法 1.主要内容:最小元素法:伏格尔法。 2.基本概念和知识点 (1)表上作业法 表上作业法是求解运输问题的一种简便而有效的方法,是一种迭代算法
7 (7)有价证券的选择问题。 (8)环境保护问题。 3.问题与应用 (1)根据实际问题,如何建立线性规划模型? (2)如何将线性规划模型解的数学语言转化为管理语言? (三)思考与实践 什么是线性规划?如何理解线性规划的数学模型? 单纯型法的两种检验及算法步骤? (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第三章 运输问题 (一)目的与要求 1.掌握运输问题的数学模型。 2.掌握求解运输问题的表上作业法。 3.能把产销不平衡问题转化为产销平衡问题。 4.掌握运输模型的若干实际应用例子。 5.我国物流的发展及运输问题的应用。 (二)教学内容 第一节 运输问题的建模 1.主要内容: 运输问题的数学模型;运输问题数学模型的特点。 2.基本概念和知识点 (1)产销平衡运输问题的数学模型 (2)产销不平衡运输问题 (3)运输问题的特殊性 约束条件系数矩阵元素等于 0 或 1;约束条件系数矩阵的每一列有两个非零 元素,这对应于每一个变量在前 m 个约束方程中出现一次,在后 n 个约束方程 中也出现一次;对于产销平衡运输问题,还有以下特点:所有结构约束条件都是 等式约束;各产地产量之和等于各销地销量之和。 (4)我国物流产业的长足进步 运输问题在提升物流效率方面的案例分析。 3.问题与应用 (1)如何理解运输问题的含义? (2)运输问题模型的特点有哪些? 第二节 平衡运输问题的表上作业法 1.主要内容:最小元素法;伏格尔法。 2.基本概念和知识点 (1)表上作业法 表上作业法是求解运输问题的一种简便而有效的方法,是一种迭代算法
(2)最小元素法 (3)Vge1法 (4 闭回路法 (5)位势法 3.问题与应用 (1)对于平衡运输问题,掌握如何进行表上作业法求解运输问题。 (2)表上作业法与单纯型法的区别是什么? 第三节 不平衡运输问题 1.主要内容:将不平衡运输问题转化为平衡运输问题。 2.基本概念和知识点 (1)总产量大于总销量运输问题的数学模型。 (2)总销量大于总产量运输问题的数学模型。 3.问愿与应用 (1)如何将不平衡运输问题转化为平衡运输问题? (2)在不平衡运输问题中,运费如何设置? 第四节案例分析 1.主要内容:运用运输问题的建模思想,解决实际的建模问题。 2.基本概念和知识点。 (1)销量大于产量的化肥调拨问题。 (2)产量大于销量的柴油机供销问题, (3)船舶调度问题。 3问源与应用 (1)针对实际问题,如何建立运输问题的数学模型 (三)思考与实践 (1)试比较运输问题与线性规划问题的数学模型,掌握求解运输问题的表 上作业法。 (2)物流企业运输调度分析 (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第四章整数规划 (一)目的与要求 1.正确理解整数规划的含义 2.掌握分枝定界法的思想和方法 3.掌握0一1变量的恰当引入和使用。 4.掌握指派问题的算法。 5.我国航空产业的发展及整数规制的应用 (一)数学内容 第一节整数规划的建模 1.主要内容:整数规划的建模思想与方法 2.基本概念和知识点 (1)整数规划的含义
8 (2)最小元素法 (3)Vogel 法 (4)闭回路法 (5)位势法 3.问题与应用 (1)对于平衡运输问题,掌握如何进行表上作业法求解运输问题。 (2)表上作业法与单纯型法的区别是什么? 第三节 不平衡运输问题 1.主要内容:将不平衡运输问题转化为平衡运输问题。 2.基本概念和知识点 (1)总产量大于总销量运输问题的数学模型。 (2)总销量大于总产量运输问题的数学模型。 3.问题与应用 (1)如何将不平衡运输问题转化为平衡运输问题? (2)在不平衡运输问题中,运费如何设置? 第四节 案例分析 1.主要内容:运用运输问题的建模思想,解决实际的建模问题。 2.基本概念和知识点。 (1)销量大于产量的化肥调拨问题。 (2)产量大于销量的柴油机供销问题。 (3)船舶调度问题。 3.问题与应用 (1)针对实际问题,如何建立运输问题的数学模型。 (三)思考与实践 (1)试比较运输问题与线性规划问题的数学模型,掌握求解运输问题的表 上作业法。 (2)物流企业运输调度分析 (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第四章 整数规划 (一)目的与要求 1.正确理解整数规划的含义。 2.掌握分枝定界法的思想和方法。 3.掌握 0-1 变量的恰当引入和使用。 4.掌握指派问题的算法。 5.我国航空产业的发展及整数规划的应用 (二)教学内容 第一节 整数规划的建模 1.主要内容:整数规划的建模思想与方法 2.基本概念和知识点 (1)整数规划的含义
(2)整数规划的建模方法。 3.问题与应用 (1)如何理解整数规划的建模思想与方法? 第二节整数规划的分枝定界法 1.主要内容:分枝定界算法。 2.基木概念和知识点 (1)分与定界 “分枝”为整数规划最优解的出现创造条件,“定界”则可以提高搜索的效 率。 (2)分枝定界算法 3.问题与应用 (1)如何理解和掌握整数规划的分枝定界算法? 第三节 0- 1型整数规划 1.主要内容:0一1型整数规划的建模原理 2.基本概念和知识点 (1)0一1型恋层 (2)0一1型整数规划的建模 (3)0-1型整数规划的解法 3.问题与应用 (1)如何理解和掌握0一1型整数规划的建模及其解法? 第四节指派问期 指派问题的建模原理及其算法 (1)指派问题的标准形式及其数学模型。 (2)指派问题的匈牙利算法。 (3)非标准的指派问颗。 题与应用 (1)如何理解和掌握指派问题的建模原理及其算法? 第五节案例分析 1.主要内容:运用整数规划的建模思想,解决实际建模问题。 2.基本概念和知识点 招聘问题 (2)集合覆盖问题 (3)背包问题 (4)场站问题 3.问题与应用 (1)针对实际问题,如何建立整数规划的数学模型并求解? (2)我国航空产业的基本介绍:我国航空产业从无到有的发展历程:整数 规划在航空公司机型分配中的应用: (三)思考与实践 9
9 (2)整数规划的建模方法。 3.问题与应用 (1)如何理解整数规划的建模思想与方法? 第二节 整数规划的分枝定界法 1.主要内容:分枝定界算法。 2.基本概念和知识点 (1)分枝与定界 “分枝”为整数规划最优解的出现创造条件,“定界”则可以提高搜索的效 率。 (2)分枝定界算法。 3.问题与应用 (1)如何理解和掌握整数规划的分枝定界算法? 第三节 0-1 型整数规划 1.主要内容:0-1 型整数规划的建模原理 2.基本概念和知识点 (1)0-1 型变量 (2)0-1 型整数规划的建模 (3)0-1 型整数规划的解法 3.问题与应用 (1)如何理解和掌握 0-1 型整数规划的建模及其解法? 第四节 指派问题 1.主要内容:指派问题的建模原理及其算法 2.基本概念和知识点 (1)指派问题的标准形式及其数学模型。 (2)指派问题的匈牙利算法。 (3)非标准的指派问题。 3.问题与应用 (1)如何理解和掌握指派问题的建模原理及其算法? 第五节 案例分析 1.主要内容:运用整数规划的建模思想,解决实际建模问题。 2.基本概念和知识点 (1)招聘问题。 (2)集合覆盖问题。 (3)背包问题。 (4)场站问题。 3.问题与应用 (1)针对实际问题,如何建立整数规划的数学模型并求解? (2)我国航空产业的基本介绍;我国航空产业从无到有的发展历程;整数 规划在航空公司机型分配中的应用; (三)思考与实践
试比较整数规划与线性规划的数学模型,掌握其求解算法。 (四)数学方法上与毛段 本章主要采用课堂讲授、课堂讨论的形式。 第五章图论及其应用 (一)目的与要求 1正确堂据握图的一些基木概今 2.掌握树的概念和最小支撑树的求解算法 3.正确掌握网络最短路线问题的Dijkstra算法。 4.掌握网络最大流问题的算法。 5.了解网络最小费用最大流的算法。 6.中国高铁交通网络及最大流问题的应用案例 (一)数学内容 一节图和杨 1.主要内容:图的基本概念和基本定理及树的概念 2.基本概念和知识点 (1)点、边、弧 (2)无向图与有向图。 (3)连通图、不连通图、基础图。 (4)有向图的路和链。 (5)次、支撑子图。 (6)树、支撑树和最小支撑树的概念 3.问题与应用 (1)如何理解图、树的基本概念和两个基本定理? 第二节最短路问 l.主要内容:网络最短路概念及Dijkstra算法。 2.基本概念和知识点 (】)最短路概念 (2)D ijkstra算法的基本思想。 3.问题与应用 (1)如何理解网络最短路概念? (2)如何掌握Dijkstra算法? (3)最短路问题在我国高铁建设中的案例分析 第三节 最大流问题 1.主要内容:最大流问题的基本概念及其基本定理 2.基本概念和知识点 (1)网络与流」 (2)可行流与最大流 (3)增广 (4)截集与截量, (5)寻找最大流的标号法(Ford,Fulkerson方法) (6)最小费用最大流问题。 9
10 试比较整数规划与线性规划的数学模型,掌握其求解算法。 (四)教学方法与手段 本章主要采用课堂讲授、课堂讨论的形式。 第五章 图论及其应用 (一)目的与要求 1.正确掌握图的一些基本概念。 2.掌握树的概念和最小支撑树的求解算法。 3.正确掌握网络最短路线问题的 Dijkstra 算法。 4.掌握网络最大流问题的算法。 5.了解网络最小费用最大流的算法。 6.中国高铁交通网络及最大流问题的应用案例 (二)教学内容 第一节 图和树 1.主要内容:图的基本概念和基本定理及树的概念 2.基本概念和知识点 (1)点、边、弧。 (2)无向图与有向图。 (3)连通图、不连通图、基础图。 (4)有向图的路和链。 (5)次、支撑子图。 (6)树、支撑树和最小支撑树的概念。 3.问题与应用 (1)如何理解图、树的基本概念和两个基本定理? 第二节 最短路问题 1.主要内容:网络最短路概念及 Dijkstra 算法。 2.基本概念和知识点 (1)最短路概念。 (2)Dijkstra 算法的基本思想。 3.问题与应用 (1)如何理解网络最短路概念? (2)如何掌握 Dijkstra 算法? (3)最短路问题在我国高铁建设中的案例分析 第三节 最大流问题 1.主要内容:最大流问题的基本概念及其基本定理 2.基本概念和知识点 (1)网络与流。 (2)可行流与最大流。 (3)增广链。 (4)截集与截量。 (5)寻找最大流的标号法(Ford,Fulkerson 方法) (6)最小费用最大流问题