粒子宇宙学简介 中科院高能所 张新民 2006.6.5
粒子宇宙学简介 中科院高能所 张新民 2006.6.5
物质基本结构(粒子物理) 三代夸克和轻子 规范相互作用:SU(3)×SU(2)XU(1) Higs粒子仍未发现 真空自发破缺机制??
物质基本结构 (粒子物理) • 三代夸克和轻子 • 规范相互作用: SU(3) C×SU(2)L×U(1)Y • Higgs 粒子仍未发现 真空自发破缺机制???
v(业) KTICARY Hi995 题 EcIL 园Bb what is Hi995 i 速 望 暗物 95z%暗量 所迷 LcHsFokye 主字庙是 THE DARK SIDE MRS UNIE 角不的东西
WMAP The biggest surprise Nothing Particular Surprising nflation Q22(739%0)92/(23%⊕g2(4%) Important 精确宇宙学时代
WMAP: The Biggest Surprise Nothing Particular Surprising →Inflation DE (73%) DM (23%) (4%) B Important: 精确宇宙学时代
问题 rk Energy o13% 什么是暗物质? old Atoms 4yo Da Ma tents 暗能量的物理本质是什么? 为什么没有反物质?
问题: •什么是暗物质? •暗能量的物理本质是什么? •为什么没有反物质?
需要新物理 ●暗物质:中微子是暗物质,但不是冷暗 物质;什么是冷暗物质? ●暗能量:势能和真空能是暗能量,但理 论预言太大一宇宙学常数问题? ●反物质:标准模型可以产生正反物质不 对称,但太小,需要新物理? ● Inflation:什么是 inflaton?
需要新物理 ⚫ 暗物质:中微子是暗物质,但不是冷暗 物质;什么是冷暗物质? ⚫ 暗能量:势能和真空能是暗能量,但理 论预言太大-宇宙学常数问题? ⚫ 反物质:标准模型可以产生正反物质不 对称,但太小,需要新物理? ⚫ Inflation:什么是inflaton?
Nature of"slen+m。9r计+”年 Neutrino Axi。n SVST Ax, ' no Neu+ no SneM+rino 百花 Teh-8anDM拿98 susY -Q Ball NQ morino wImP21 LLAs Super.643 2 3 maw:wt P kus Th De+ee+on !! 儿 Neutra/ine 众xon DAMA coll aLer t'e
中微子与暗物质 I.中微子是暗物质粒子 Ⅱ.热暗物质不起主导作用
中微子与暗物质 I. 中微子是暗物质粒子 II. 热暗物质不起主导作用
Application showcase neutrino mass neutrino mass and abundance O. Elgaroy et al(2dFGRS PRL89,061301(2002) 92.5cV hot dark matter suppress power at small scale kn≈0.026 1/2o1/2hMn lev △P n-0.81m 0.1N leV八(gmh2 FIG. 1. Power spectra for f,-0(solid line), f,=Q0I (dashed line), and f,-.05(dot-dashed line)with amplitudes fitted to the 2dfGRS power spectrum data(vertical bars) in redshift space. We have fixed fe=03, nA=0.7, h=0.7, and n, /=002. The vartical dashed lines limit the range in k used in the fits current cosmological bound: (95% CL mv<1.7/3 ev(weak prior) m, <0.6/ ev(strong prior) VS. tritium decay: mve <2.2 eV
Application showcase: neutrino mass hot dark matter suppress power at small scale neutrino mass and abundance: O. Elgaroy et al (2dFGRS) PRL 89, 061301 (2002) current cosmological bound: (95% CL) m<1.7/3 eV (weak prior) m <0.6/3 eV (strong prior) vs. tritium decay: me < 2.2 eV
Cosmological neutrino bounds for non-cosmologists Tegmark 2 Department of Physics, Univers ity of Pennsylvania, Philadelphia, PA 19104, USA (Dated: February 18, 2004. To appear in Neutrino Physics, proceedings of the Nobel Symposium 2004) (Enkoping, Sweden, August 19-24, 2004, Eds. L. Bergstrom, O. Botner, P. Carlson, P.O. Hulth T Ohlsson) I briefly review cosmological bounds on neutrino masses and the underlying gravitational physics t a level appropriate for readers outside the field of cosmology. For the case of three massive neutrinos with standard model freezeout, the current 95% upper limit on the sum of their masses is 0.42 eV. I summarize the basic physical mechanism making matter clustering such a sensitive probe of massive neutrinos. I discuss the prospects of doing still better in coming years using tools such as lensing tomography, approaching a sensitivity around 0.03 eV. Since the lower bound from detect neutrino mass if the technical and fiscal challenges can be met ogical measurements should atmospheric neutrino oscillations is around 0.05 eV, upcoming cosmo Wavelengthλ[h-lMpc] 104 1000 z104 0.8 000 60.6 O SDSS galaxies ☆ Cluster abundance 0.2 ▲ Lyman Alpha Forest 0.5 0.001 0.01 Wavenumber k [h/Mpc 0.1 0.15 0.2 Dark matter density wd
hep-ph/0503257