Physics of the cosmological collider Non-Gaussianity in the post-Planck era Yi Wang王一,2017.03.03 The Hong Kong University of Science and Technology
Physics of the Cosmological Collider -- Non-Gaussianity in the Post-Planck Era Yi Wang 王一, 2017.03.03 The Hong Kong University of Science and Technology
Collaboration with ⅹ.Chen0909.0496,0911.3380,1205.0160 X Chen&z.Z. Xianyu160407841,1610.06597,161208122 ⅹ.Chen&MH. NamJoo1509.03930,1601.06228,1608.01299
Collaboration with X. Chen 0909.0496, 0911.3380, 1205.0160 X. Chen & Z. Z. Xianyu 1604.07841, 1610.06597, 1612.08122 X. Chen & M. H. Namjoo 1509.03930, 1601.06228, 1608.01299
DAWN MIME inflation tiny fraction of a second 380.000 years 13.7 billion vears
Review of non -g before planck
Review of Non-G before Planck
Inflationary (aveNt )correlation functions k,<k,…kn) S: curvature fluctuation on uniform density slices 分n(CMB,3eLss)
Inflationary (𝑎~𝑒 𝐻𝑡 ) correlation functions 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 𝜁: curvature fluctuation on uniform density slices 𝜁 ⇔ 𝛿𝑇 𝑇 (CMB), 𝜁 ⇔ 𝛿𝜌 𝜌 (LSS)
How to calculate(Sk, Sk Sk)? in-in formalism (9Q(7)2)=0|e/m()Q(r)re-nH1(r)d9 expansion order by order "Feynman, diagrams
How to calculate 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 ? in-in formalism expansion order by order ~ “Feynman” diagrams
Inflationary(avent) correlation functions S: curvature fluctuation on uniform density slices T 3台(CMB,3分(LSS) (k1sk2<k3)=(2)63(k1+k2+k3) k2k2k3 F(k1/k3, k2/ k3) size of non-G: fN NL Ps 2pt F shape: shape of non-G
Inflationary (𝑎~𝑒 𝐻𝑡 ) correlation functions 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 𝜁: curvature fluctuation on uniform density slices 𝜁 ⇔ 𝛿𝑇 𝑇 (CMB), 𝜁 ⇔ 𝛿𝜌 𝜌 (LSS) 𝑃𝜁 ~ 2pt F { size of non-G: ~ 𝑓𝑁𝐿 shape: shape of non-G
Local shape non-G 2 0.6 0.4k2/ka3 ki/k
Local shape non-G:
Example of local non-G: the curvaton scenario Sasaki. valiviita. Wands 2006 inflaton curvaton assuming same decay product decayed decayed entropy pertur bation becomes adiabatic curvaton density catches up decayed oscillation perturbation starts to gravitate curvaton has entropy perturbation slow rolling more slowly rolling inflaton perturbation assumed small 5 NL (+m)=3 5r 36 2 3Sx, dec 4-O x, dec 3px+4prIt 0.00.20.40.60.81.0
Example of local non-G: the curvaton scenario: Sasaki, Valiviita, Wands 2006
Equilateral and orthogonal shapes of non-G -0.5 0.4 -1 k2/k3 k2/k3 k/206
Equilateral and orthogonal shapes of non-G: