Elasticity Chapter 1 ntroduction
1 Elasticity
弹单性生力学 论
2
Chapter 1 Introduction □」§1-1 The Modeling of the Engineering Mechanics Problem 」§1-2 The Basic Contents of the Elasticity DI81-3 The Basic Assumption of the elasticity Problem 8 1-4 The Several Basic Concepts of Elasticity 8 1-5 The Study Method of the Elasticity Exercises Lesson
3 Chapter 1 Introduction §1-1 The Modeling of the Engineering Mechanics Problem §1-3 The Basic Assumption of the Elasticity Problem §1-4 The Several Basic Concepts of Elasticity §1-5 The Study Method of the Elasticity §1-2 The Basic Contents of the Elasticity Exercises Lesson
论 第一章绪论 §1-1工程力学问题的建模 §1-2弹性力学的基本内容 口§1-3弹性力学问题的基本假设 」§1-4弹性力学中的几个基本概念 §1-5弹性力学的学习方法 D习题课
4 第一章 绪 论 §1-1 工程力学问题的建模 §1-3 弹性力学问题的基本假设 §1-4 弹性力学中的几个基本概念 §1-5 弹性力学的学习方法 §1-2 弹性力学的基本内容 习题课
The elasticity is a branch of the solid mechanics, the task of it is to research the elasticity objects stress, deformation and displacement due to external force or change of temperature This course shows the mathematics modeling process of mechanics problems completely, and establishes the basic equation and boundary condition of the elasticity and proceeds to beg the solutions of some problem. The foundation of the elasticity basic equation lays a foundation for further number method The elasticity is the foundation of studying plasticity fracture mechanics and finite element method
5 The elasticity is a branch of the solid mechanics, the task of it is to research the elasticity object’s stress, deformation and displacement due to external force or change of temperature. The elasticity is the foundation of studying plasticity, fracture mechanics and finite element method. This course shows the mathematics modeling process of mechanics problems completely, and establishes the basic equation and boundary condition of the elasticity and proceeds to beg the solutions of some problem. The foundation of the elasticity basic equation lays a foundation for further number method
论 弹性力学是固体力学的一个分支,研究弹性体由于外 力作用或温度改变等原因而发生的应力、形变和位移。 本课程较为完整的表现了力学问题的数学建模过程, 建立了弹性力学的基本方程和边值条件,并对一些问题进 行了求解。弹性力学基本方程的建立为进一步的数值方法 奠定了基础。 弹性力学是学习塑性力学、断裂力学、有限元方法的 基础
6 弹性力学是固体力学的一个分支,研究弹性体由于外 力作用或温度改变等原因而发生的应力、形变和位移。 弹性力学是学习塑性力学、断裂力学、有限元方法的 基础。 本课程较为完整的表现了力学问题的数学建模过程, 建立了弹性力学的基本方程和边值条件,并对一些问题进 行了求解。弹性力学基本方程的建立为进一步的数值方法 奠定了基础
8 1-1 The Modeling of the Engineering Mechanics Problem 1, The Modeling Process of the Engineering Mechanics Problem Through the process of 工程力学问题 establishing the mechanics model 验证 in the engineering mechanics problem, generally three parts 力学模型 直接实验模型 should be simplified 验证修改 Construction Simplification 数学模型 相似实验模型 Suffering Force simplification Material Simplification 计算结果分析 Fig. 1-1 7
7 Through the process of establishing the mechanics model in the engineering mechanics problem, generally three parts should be simplified: Suffering Force Simplification Material Simplification Construction Simplification 1、The Modeling Process of the Engineering Mechanics Problem §1-1 The Modeling of the Engineering Mechanics Problem Fig.1-1
论 §1-1工程力学问题的建模 、工程力学问题的建模过程 工程力学问题 工程力学问题建立力 学模型的过程中,一般要 验证对三方面进行简化: 力学模型 直接实验模型 验证修改 结构简化 数学模型 相似实验模型 受力简化 材料简化 计算结果分析 图1-1
8 工程力学问题建立力 学模型的过程中,一般要 对三方面进行简化: 受力简化 材料简化 结构简化 一、工程力学问题的建模过程 §1-1 工程力学问题的建模 图1-1
(1) Construction Simplification Such as space problem is simplified to flat surface problem and ymmetry problem in axis, and entity construction is simplified to plate construction (2) Suffering Force Simplification According to the Saint-Venant's principle, the complex force system is simplified to an equivalent force system (3) Material simplification Material is simplified according to these hypothesises of the same kind, consecution and uniformity in each direction
9 Material is simplified according to these hypothesises of the same kind, consecution and uniformity in each direction. (3)Material simplification According to the Saint-Venant’s principle, the complex force system is simplified to an equivalent force system. (2)Suffering Force Simplification Such as space problem is simplified to flat surface problem and symmetry problem in axis, and entity construction is simplified to plate construction (1)Construction Simplification
论 (1)结构简化 如空间问题向平面问题的简化,向轴对称问题的简化,实 体结构向板、壳结构的简化。 (2)受力简化 根据圣维南原理,复杂力系简化为等效力系。 (3)材料简化 根据各向同性、连续、均匀等假设进行简化 10
10 根据各向同性、连续、均匀等假设进行简化。 (3)材料简化 根据圣维南原理,复杂力系简化为等效力系。 (2)受力简化 如空间问题向平面问题的简化,向轴对称问题的简化,实 体结构向板、壳结构的简化。 (1)结构简化