配合物基础和配位立体化学 1. Werner和配位化学的发展 2.配合物( complexes)的基本观念 3.配体的主要类型 4.配合物的几何构型 5.配合物的异构( I somer i sm)现象 6.配合物的制备和大环配体配合物 7.典型配合物的制备和表征举例 8.超分子化学
配合物基础和配位立体化学 1. Werner和配位化学的发展 2. 配合物(complexes)的基本观念 3. 配体的主要类型 4. 配合物的几何构型 5. 配合物的异构(isomerism)现象 6. 配合物的制备和大环配体配合物 7. 典型配合物的制备和表征举例 8. 超分子化学
1. Werner和配位化学的发展 Alfred werner(1866-1919) Received the Nobel Prize of Chemistry in 1913 for proposing the octahed configuration of transition complexes. Werner developed the basis for modern coordination chemistry
Alfred Werner (1866-1919) Received the Nobel Prize of Chemistry in 1913 for proposing the octahedral configuration of transition metal complexes. Werner developed the basis for modern coordination chemistry. 1. Werner和配位化学的发展
1. Single atoms act as central nuclei, around which are arranged a definite number of other atoms. coordination number. the most important Coordination numbers :3, 4, 6 and 8, the number 6 occurring especially often 40 Series of optically-active complexes with 2. Optically-active isomers of the complexes octahedral symmetry were separated in optically-active forms
1. Single atoms act as central nuclei, around which are arranged a definite number of other atoms, coordination number. The most important Coordination numbers : 3, 4, 6 and 8, the number 6 occurring especially often. 2. Optically-active isomers of the complexes , 40 series of optically-active complexes with octahedral symmetry were separated in optically-active forms
1798法国化学家 Tassaert用氨和钻矿石反应,得到红棕色的产 物,第一个钴和氨的化合物 ammoniate) 1822钴、氨的草酸盐化合物被 Gmelin制备 1851得到C0Cl6NH2,C0C"5NH3和其他钴氨化合物 1869氨合物的链理论( Chain theory) by blomstrand 1884改进的链理论 by Jongengsen 1892 Werner's dream about coordination compounds 1902 Werner's coordination theory 1911 Optical isomers of cis-ICoCI(NH3(en)2ICh, by Werner 1914 Non-carbon Optical isomers resolved by werner 1927 Lewis ideas applied in coordination compounds 1933 CFT Modern coordination theory,配合物的键和稳定性
1798 法国化学家Tassaert用氨和钴矿石反应,得到红棕色的产 物, 第一个钴和氨的化合物(ammoniate) 1822 钴、氨的草酸盐化合物被Gmelin 制备 1851 得到CoCl3 •6NH3 , CoCl3 •5NH3和其他钴氨化合物 1869 氨合物的链理论(Chain theory )by Blomstrand 1884 改进的链理论by Jøngengsen 1892 Werner’s dream about coordination compounds 1902 Werner’s coordination theory 1911 Optical isomers of cis-[CoCl(NH3 )(en)2 ]Cl2 by Werner 1914 Non-carbon Optical isomers resolved by Werner 1927 Lewis ideas applied in coordination compounds 1933 CFT Modern coordination theory, 配合物的键和稳定性
NH3-CI CoCl3·6NH3 CO<NH3NH3-NH3—NH-Cl NH CI CoCl·5NH3 NH3-NH3-NH3—NH3-Cl NH CI CI CoCl3·4NH NH3NH3-NH3—NHCl CI IrCl. 3NH3 NH3一NH3NH3 CI Jorgensen的CoCl3nNH3链式结构 (化合价概念解释一切化合物)
CoCl3 5NH3 C NH3 oCl3 4 NH3 IrCl 3 3 CoCl3 6NH3 Co NH3 NH3 Cl NH3 NH3 NH3 NH3 Cl Cl Cl NH3 NH3 NH3 Cl Ir Cl Co Cl NH3 NH3 NH3 NH3 Cl Cl Cl NH3 NH3 NH3 NH3 Cl Co Cl NH3 Jørgensen 的CoCl3 .nNH3链式结构 (化合价概念解释一切化合物)
He Trigonal planar prIsm Octahedral 2 M No of predicted isomers (numbers in No. of parentheses indicate position of the actual Formula B ligands) soeTs MAsB One One One MA4B2 Three Three wo Two (1,2) (1,2) (1,2) (1,3) MAB Thre ee Three Two Two (1,2,3) (1,2,3 (1,2,3) (1,2,4) (1,24) (1,2,6) (13,5) (1,2,6) Werner提出的几何构型和异构体数目的关系
Werner 提出的几何构型和异构体数目的关系
Co-CI NH2-NH2-NH2NH2-C1 Jorgensen提出的Co(en)2 的结构,两种异构体 CI Co-CI NH2NH2--NH2--NH2----CI NH, NH C Co NH, NH2 NH NH2 NH Werner提出的Co(en)2Cl2的结构
Cl NH2 NH2 NH2 NH2 Cl Cl Co Co Cl Cl NH2 NH2 NH2 NH2 Cl Co Cl NH2 Cl NH2 NH2 NH2 Co Cl NH2 NH2 NH2 NH2 Cl Jørgensen 提出的Co(en)2Cl2 的结构, 两种异构体 Werner 提出的Co(en)2Cl2的结构
NH3 NH: C NHa NH3 OH NH3-CO--OH OH OH C NH3 OH NH OH NH3 C NH3 NH NH Werner的无碳手性配合物|C04CNH324 OH6Br6
Co NH3 NH3 OH NH3 OH NH3 Co OH OH OH Co NH3 NH3 NH3 Co NH3 NH3 NH3 OH NH3 H3N 6+ Werner 的无碳手性配合物[Co4 (NH3 )12(OH)6 ]Br6 ==
2.配合物( complexes)的基本观念 ML 金属M(meta), Lewis酸,电子对的受体 族:456789101112 金属: Tiv Cr Mn fe co Ni cu Zn (n-1)s2nd2 d3 d d5 d6 d7 d d9 d
2 .配合物(complexes)的基本观念 ❖ MLn 金属 M (metal) , Lewis酸,电子对的受体 族: 4 5 6 7 8 9 10 11 12 金属: Ti V Cr Mn Fe Co Ni Cu Zn (n-1)s2nd2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10
>配体( ligand,L),Lews硷,电子对给体 NHr: cN-: cl- en EDtA 配位数( coordination number,CN)和配位点 Ag(NH3)2+ CN=2, Zn(EDTA)- CN=6, Cu(Cn2 CN=? 配位数≠化学计量比例:Si02 配位数≠配体数
➢ 配体( ligand, L) , Lewis硷, 电子对给体 :NH3 :CN- :Cl- en EDTA ➢ 配位数(coordination number, CN )和配位点 Ag(NH3 )2 + CN=2, Zn(EDTA)2- CN=6, Cu(CN)2 - CN=? 配位数 化学计量比 例:SiO2 配位数 配体数