
南利大学化学学院COLLEGE OFCHEMISTRY NANKAIUNIVERSITY第六章计算化学An Introduction to Computational Chemistry11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 第六章 计算化学 An Introduction to Computational Chemistry 11111111111111111

UN葡藏课程+科研实践10·初学者注意1. 基本概念2.通用方法3. 计算效率4.文献阅读5.知识积累(思想家公社http:llsobereva.com/)11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 • 课程科研实践 • 初学者注意 1. 基本概念 2. 通用方法 3. 计算效率 4. 文献阅读 5. 知识积累 (思想家公社 http://sobereva.com/ ) 11111111111111111

澜康86.1计算化学概述计算机的发展一硬件背景计算机的硬件和其他技术高速发展CPU能力GPU技术多核技术并行技术intelxeON计算速度高速增长TeslaH100SXM67TFlopsv.s.xeonPlatinum8593Q64核BlueGene/L135.58.74TFlops大量原来无法想象的计算可以轻易完成11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 §6.1 计算化学概述 大量原来无法想象的计算可以轻易完成 计算机的硬件和其他技术高速发展 计算速度高速增长 CPU能力 多核技术 GPU技术 并行技术 xeon Platinum 8593Q 64核 Tesla H100SXM 67 TFlops v.s. Blue Gene/L 135.58.74TFlops 计算机的发展—硬件背景 11111111111111111

ALUNIVE曾经的Top 1SYListSystemVendorTotal CoresRmax(TFs)Power (kw)06/199310240.060CM-5/1024Thinking Machines Corp.19191400.1911/1993FujitsuNumerical Wind Tunnel2.46/1997Intel9632ASCIRed7.311/2000IBM8192ASCI White,363200NEC512006/2002Earth-SimulatorIBM478.211/2004Blue Gene/L212992IBM1105248311/2008Roadrunner1296001759224162695011/2009JaguarCray Ine.256611/2010Tianhe-1ANUDT1863684040705024105101266011/2011KcomputerFujitsuSequoiaIBM16325789006/201215728641759011/2012TitanCray Ine560640820906/2013Tianhe-2NUDT31200003386317808Sunway931051537106/2016NRCPC10649600SummitIBM22825448805.506/2018122300729907244201006/2020FugakuFujitsu28335HPE135300006/2022Frontier906617622786HPE2958111/2024EICapitan11039616174200011111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 曾 经的 Top 1 List System Vendor Total Cores Rmax(TFs) Power (kW) 06/1993 CM-5/1024 Thinking Machines Corp. 1024 0.060 11/1993 Numerical Wind Tunnel Fujitsu 140 0.19 6/1997 ASCI Red Intel 9632 2.4 11/2000 ASCI White, IBM 8192 7.3 06/2002 Earth-Simulator NEC 5120 36 3200 11/2004 Blue Gene/L IBM 212992 478.2 11/2008 Roadrunner IBM 129600 1105 2483 11/2009 Jaguar Cray Inc. 224162 1759 6950 11/2010 Tianhe-1A NUDT 186368 2566 4040 11/2011 K computer Fujitsu 705024 10510 12660 06/2012 Sequoia IBM 1572864 16325 7890 11/2012 Titan Cray Inc 560640 17590 8209 06/2013 Tianhe-2 NUDT 3120000 33863 17808 06/2016 Sunway NRCPC 10649600 93105 15371 06/2018 Summit IBM 2282544 122300 8805.5 06/2020 Fugaku Fujitsu 7299072 442010 28335 06/2022 Frontier HPE 9066176 1353000 22786 11/2024 El Capitan HPE 11039616 1742000 29581 11111111111111111

10PerformanceDevelopment101010°800000n(Y8O-No.500No.10Sum10210110°10-1199520052010201520002020202511111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 Performance Development 1995 2000 2005 2010 2015 2020 2025 10-1 10 0 101 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 1010 1011 Performance(GFlop/s) No.500 No.1 Sum 11111111111111111

南凰计算化学相关名词Computational chemistry is a branch of chemistry that uses computersimulation to assist in solving chemical problems. It uses methods oftheoretical chemistry,incorporated into efficient computerprograms, tocalculate the structures and properties of molecules and solids.Fromhttp://en.wikipedia.org量子力学OuantumMechanics分子力学MolecularMechanics理论化学TheoreticalChemistry计算化学Computational Chemistry计算机化学ComputerChemistry分子模拟MolecularModeling11111111111111111《量子化学》弟六章计算化学
《量子化学》第六章 计算化学 Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into efficient computer programs, to calculate the structures and properties of molecules and solids. From http://en.wikipedia.org Quantum Mechanics 量子力学 Molecular Mechanics 分子力学 Theoretical Chemistry 理论化学 Computational Chemistry 计算化学 Computer Chemistry 计算机化学 Molecular Modeling 分子模拟 计算化学相关名词 11111111111111111

南The term theoretical chemistry may be defined as a mathematical descriptionof chemistry, whereas computational chemistry is usually used when amathematicalmethodissufficientlywelldevelopedthatitcanbeautomatedforimplementation on a computer.In theoretical chemistry, chemists, physicistsand mathematicians develop algorithms and computer programs to predictatomic and molecular properties and reaction paths for chemical reactionsComputational chemists, in contrast, may simply apply existing computerprograms and methodologies to specific chemical questions.There are two different aspects to computational chemistry. To find a starting point for a laboratory synthesis, or to assist in understandingexperimental data, such as the position and source of spectroscopic peaks.To predict the possibility of so far entirely unknown molecules or to explorereaction mechanisms that are not readily studied by experimental means.Thus, computational chemistry can assist the experimental chemist or it canchallengethe experimental chemist to find entirely new chemical objectsFromhttp:/len.wikipedia.org《量子化学》第六章计算化学1111111111111
《量子化学》第六章 计算化学 The term theoretical chemistry may be defined as a mathematical description of chemistry, whereas computational chemistry is usually used when a mathematical method is sufficiently well developed that it can be automated for implementation on a computer. In theoretical chemistry, chemists, physicists and mathematicians develop algorithms and computer programs to predict atomic and molecular properties and reaction paths for chemical reactions. Computational chemists, in contrast, may simply apply existing computer programs and methodologies to specific chemical questions. There are two different aspects to computational chemistry: • To find a starting point for a laboratory synthesis, or to assist in understanding experimental data, such as the position and source of spectroscopic peaks. • To predict the possibility of so far entirely unknown molecules or to explore reaction mechanisms that are not readily studied by experimental means. Thus, computational chemistry can assist the experimental chemist or it can challenge the experimental chemist to find entirely new chemical objects From http://en.wikipedia.org 11111111111111111

南计算化学研究领域:: The prediction of the molecular structure of molecules by the use of thesimulation of forces,or more accurate quantum chemical methods,to findstationary points on the energy surface as the position of the nuclei is varied: Storing and searching for data on chemical entities (see chemical databases)Identifying correlations between chemical structures and properties (seeQSPR and QSAR).:Computational approaches to help in the efficient synthesis of compounds: Computational approaches to design molecules that interact in specific wayswith other molecules (e.g. drug design and catalysis).11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 计算化学研究领域: • The prediction of the molecular structure of molecules by the use of the simulation of forces, or more accurate quantum chemical methods, to find stationary points on the energy surface as the position of the nuclei is varied. • Storing and searching for data on chemical entities (see chemical databases). • Identifying correlations between chemical structures and properties (see QSPR and QSAR). • Computational approaches to help in the efficient synthesis of compounds. • Computational approaches to design molecules that interact in specific ways with other molecules (e.g. drug design and catalysis). 11111111111111111

UNIL(南l计算化学一般过程919选择方法:选择描述体系中分子内和分子间相互作用的模型,一般采用量子力学和分子力学。计算体系中各种原子、分子排布的能量,并能得到系统能量随原子分子位置改变的相应变化计算:如能量最小化,分子动力学或MonteCarlo模拟,构象搜索等等分析:计算结果的分析,不仅分析所得到的性质,而且要判断其合理性11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 计算化学一般过程 • 选择方法:选择描述体系中分子内和分子间相互作用的模型,一般采用 量子力学和分子力学。计算体系中各种原子、分子排布的能量,并能得 到系统能量随原子分子位置改变的相应变化 • 计算:如能量最小化,分子动力学或Monte Carlo模拟,构象搜索等等 • 分析:计算结果的分析,不仅分析所得到的性质,而且要判断其合理性 11111111111111111

UNI南凰计算化学可以计算一基于量子化学·化学反应过程(稳态及过渡态结构确定、反应热、反应能垒、反应机理及反应动力学等)·化合物稳态结构(如中性分子、自由基、阴、阳离子等)·谱图验证及预测(IR,Raman,NMR,UVVis,VCD,ROA,ECD,ORD,XPS,EPR,Franck-Condon及超精细光谱等)·分子各种性质(静电势、偶极矩、布居数、轨道特性、键级、电荷、极化率、电子亲和能、电离势、自旋密度、电子转移、手性)热力学分析(△S、△H、△G、键能、原子化能)·分子间相互作用(如氢键及范德华作用)·激发态(激发态结构确定、激发能、跃迁偶极矩、荧光光谱、磷光光谱、势能面交叉研究)11111111111111111《量子化学》第六章计算化学
《量子化学》第六章 计算化学 计算化学可以计算—基于量子化学 • 化学反应过程(稳态及过渡态结构确定、反应热、反应能垒、反应机理及 反应动力学等) • 化合物稳态结构(如中性分子、自由基、阴、阳离子等) • 谱图验证及预测(IR, Raman, NMR, UV/Vis, VCD, ROA, ECD, ORD, XPS, EPR, Franck-Condon及超精细光谱等) • 分子各种性质(静电势、偶极矩、布居数、轨道特性、键级、电荷、极化 率、电子亲和能、电离势、自旋密度、电子转移、手性) • 热力学分析(S、 H、 G、键能、原子化能) • 分子间相互作用(如氢键及范德华作用) • 激发态(激发态结构确定、激发能、跃迁偶极矩、荧光光谱、磷光光谱、 势能面交叉研究) 11111111111111111