VsM 5200 Bi-Directional Control Thyristor TAVM 1800A TRMS 2830A 5STB17N5200 sM=29000A 1.02V r=0.320mg DoC. No. 5SYA1036-03 Sep Two thyristors integrated into one wafer Patented free-floating silicon technology Designed for traction, energy and industrial applications Optimum power handling capability Interdigitated amplifying gate The electrical and thermal data are valid for one thyristor half of the device Blocking Part Number 5STB 17N5200 5STB 17N50005STB 17N4600 Conditions 5200V 5000V 4600V f=5 Hz, tp 4400V 4200V 4000V 50 Hz, tp 400mA IVs 400mA T1=125°C dv/dtcrit 2000V/μs @Exp.to0.67×Vs VRM is equal to VsM up to T=110C Mechanical data Mounting force nom 90 KN 一小一 min 81 kN max 108kN Gate B Acceleration Device unclamped 50m/s Device clamped Coth B 2 center holes m 2.9k Surface creepage distance 53 mm Foston connectors 5. 3X0. 8 Air strike distance 22 mm ABB Semiconductors AG reserves the right to change specifications without notice. RD
ABB Semiconductors AG reserves the right to change specifications without notice. VSM = 5200 V ITAVM = 1800 A ITRMS = 2830 A ITSM = 29000 A VT0 = 1.02 V rT = 0.320 mΩ Bi-Directional Control Thyristor 5STB 17N5200 Doc. No. 5SYA1036-03 Sep. 01 • Two thyristors integrated into one wafer • Patented free-floating silicon technology • Designed for traction, energy and industrial applications • Optimum power handling capability • Interdigitated amplifying gate. The electrical and thermal data are valid for one thyristor half of the device. Blocking Part Number 5STB 17N5200 5STB 17N5000 5STB 17N4600 Conditions VSM 5200 V 5000 V 4600 V f = 5 Hz, tp = 10ms VRM 4400 V 4200 V 4000 V f = 50 Hz,tp = 10ms ISM ≤ 400 mA VSM IRM ≤ 400 mA VRM Tj = 125°C dV/dtcrit 2000 V/µs @ Exp. to 0.67xVSM VRM is equal to VSM up to Tj = 110°C Mechanical data FM Mounting force nom. 90 kN min. 81 kN max. 108 kN a Acceleration Device unclamped Device clamped 50 100 m/s2 m/s2 m Weight 2.9 kg DS Surface creepage distance 53 mm Da Air strike distance 22 mm
5sTB17N5200 On-state Max average on-state 1800 A Half sine wave, Tc=70C ITRMS Max RMS on-state current 2830A ITSM Max peak non-repetitive 29000A 10ms|T=125°c surge current 31000A tp 8.3 ms After surge Limiting load integral 4205 kAs tp 10 ms VD= VR=OV 3990 kAs tp 8.3ms On-state voltage 1.68V 2000A 0 Threshold voltage 1.02V =1000-3000AT=125°c 「T Slope resistance 0.320mg Holding current 50-250mA T=25°c 25-150mA T 125°C [Latching current 100-500mAT1=25°c 50300mAT 125°C Switching di/dti Critical rate of rise of on-state 250 A/us Cont f=50 Hz VD200V, di/dt=-15Aμs Qr Recovery charge min 4000 UAS max 5200 HAs Triggering Gate trigger voltage 26V|=25°C Gate trigger current 400mAT=25℃c Gate non-trigger voltage> 0. 3V VD=0.4. VRM T=125C Gate non-trigger current 10 mA Vp=0.4-VRM T=125C Peak forward gate voltage 12V FGM Peak forward gate current 10A RGM Peak reverse gate voltage 10V P Maximum gate power loss 3 W ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1036-03 Sep 01
5STB 17N5200 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1036-03 Sep. 01 page 2 of 6 On-state ITAVM Max. average on-state t 1800 A Half sine wave, TC = 70°C ITRMS Max. RMS on-state current 2830 A ITSM Max. peak non-repetitive 29000 A tp = 10 ms Tj = 125°C surge current 31000 A tp = 8.3 ms After surge: I 2 t Limiting load integral 4205 kA2 s tp = 10 ms VD = VR = 0V 3990 kA2 s tp = 8.3 ms VT On-state voltage 1.68 V IT = 2000 A VT0 Threshold voltage 1.02 V IT = 1000 - 3000 A Tj = 125°C rT Slope resistance 0.320 mΩ IH Holding current 50-250 mA Tj = 25°C 25-150 mA Tj = 125°C IL Latching current 100-500 mA Tj = 25°C 50-300 mA Tj = 125°C Switching di/dtcrit Critical rate of rise of on-state 250 A/µs Cont. f = 50 Hz VD ≤ 0.67⋅VDRM , Tj = 125°C current 500 A/µs I 60 sec. TRM = 3000 A f = 50Hz IFG = 2 A, tr = 0.5 µs td Delay time ≤ 3.0 µs VD = 0.4⋅VDRM IFG = 2 A, tr = 0.5 µs tq Turn-off time ≤ 700 µs VD ≤ 0.67⋅VDRM ITRM = 3000 A, Tj = 125°C dvD/dt = 20V/µs VR > 200 V, diT/dt = -1.5 A/µs Qrr Recovery charge min 4000 µAs max 5200 µAs Triggering VGT Gate trigger voltage ≤ 2.6 V Tj = 25°C IGT Gate trigger current ≤ 400 mA Tj = 25°C VGD Gate non-trigger voltage ≥ 0.3 V VD = 0.4⋅VRM Tj = 125°C IGD Gate non-trigger current ≥ 10 mA VD = 0.4⋅VRM Tj = 125°C VFGM Peak forward gate voltage 12 V IFGM Peak forward gate current 10 A VRGM Peak reverse gate voltage 10 V PG Maximum gate power loss 3 W
5sTB17N5200 Thermal Operating junction temperature range -40.125° T Storage temperature range 40.150°C Thermal resistance 22.8 K/kW Anode side cooled unction to case 22.8 K/kw Cathode side cooled 11.4 K/kW Double side cooled RthcH Thermal resistance case to 4 K/kw Single side cooled heat sink 2 K/kW Double side cooled Analytical function for transient thermal impedance Zc()=∑R -tri 3 a010 0.100 1.000 t(s)08651015580021200075 Fig. 1 Transient thermal impedance junction to case On-state characteristic model: 4000 VT=A+B-iT+CIn(iT+1)+D.IT Valid for i= 500-4000 A 3600 25°C 1309 0.00008 0.125 0.026 2800 IT(kA) 2400 2000 1200 T=125°c 0.81,012 Fig. 2 On-state characteristics Fig 3 On-state characteristics ABB Semiconductors AG reserves the right to change specifications without notice Doc. No. 5SYA1036-03 Sep 01
5STB 17N5200 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1036-03 Sep. 01 page 3 of 6 Thermal Tj Operating junction temperature range -40…125 °C Tstg Storage temperature range -40…150 °C RthJC Thermal resistance 22.8 K/kW Anode side cooled junction to case 22.8 K/kW Cathode side cooled 11.4 K/kW Double side cooled RthCH Thermal resistance case to 4 K/kW Single side cooled heat sink 2 K/kW Double side cooled Analytical function for transient thermal impedance: Z (t) = R(1- e ) n i 1 -t/ thJC i i = τ i 1 234 Ri (K/kW) 6.77 2.51 1.34 0.78 τi (s) 0.8651 0.1558 0.0212 0.0075 0.001 0.010 0.100 1.000 10.000 t [s] 0 5 10 15 ZthJC [K/kW] BN1 180° sine: add 1 K/kW 180° rectangular: add 1 K/kW 120° rectangular: add 1 K/kW 60° rectangular: add 2 K/kW Fm = 81..108 kN Double-side cooling Fig. 1 Transient thermal impedance junction to case. On-state characteristic model: VT = A+ B⋅iT +C⋅ln(iT +1)+ D⋅ IT Valid for iT = 500 – 4000 A A B CD 1.309 0.00008 -0.125 0.026 Fig. 2 On-state characteristics. Fig. 3 On-state characteristics
5sTB17N5200 case 130 Double-sided cooling 125 3500 3000 80°sine 120° rectangula 2500 125°C 1400 050010001500200025003000 ITAV (A) Fig 4 On-state power dissipation vs. mean on Fig 5 Max permissible case temperature vs. state current. Turn-on losses excluded mean on-state current (kA) (MA s) ITeM(kA) R 2. VR=0.6xVRM 50 2.Va=0.6xVRM 4. Va-0.6xVRM_+10 10 50100 5102050100 tp (ms) Fig 6 Surge on-state current vs pulse length Fig. 7 Surge on-state current vs number of Half-sine wave pulses. Half-sine wave ABB Semiconductors AG reserves the right to change specifications without notice Doc. No. 5SYA1036-03 Sep 01 page 4 of 6
5STB 17N5200 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1036-03 Sep. 01 page 4 of 6 0 500 1000 1500 2000 2500 3000 I TAV (A) 70 75 80 85 90 95 100 105 110 115 120 125 130 Tcase (°C) DC 180° rectangular 180° sine 120° rectangular 5STB 17N5200 Double-sided cooling Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded. Fig. 5 Max. permissible case temperature vs. mean on-state current. Fig. 6 Surge on-state current vs. pulse length. Half-sine wave. Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz
5sTB17N5200 20w tpma 5°c 20.30.40.50.6 08091.0 Fig. 8 Gate trigger characteristics Fig 9 Max peak gate power loss 00taM=30004 日T=Tm 345678910 Fig 10 Recovery charge Vs decay rate of on- Fig. 11 Peak reverse recovery current VS decay state current rate of on-state current Turn-off time, ty pical parameter relationship f3(dvldt) 04812162024 571022357103 Fig 12 to/tg1=fi(T) Fig. 13 to/tai=f2(-dir/dt Fig. 14 to/tai= f3(dv/dt) t=tq·f(T·f2( diy/dt)·f3dvdt) tg1 at normalized values(see page 2) tq: at varying conditions ABB Semiconductors AG reserves the right to change specifications without notice Doc. No. 5SYA1036-03 Sep 01 page 5 of 6
5STB 17N5200 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1036-03 Sep. 01 page 5 of 6 Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss. 104 3000 4000 5000 6000 7000 8000 20000 Qrr(µAs) 30 -diT/dt (A/µs) 1 10 2 3 4 5 6 7 8 9 20 I TRM = 3000 A Tj = Tjmax 5STB 17N5200 2000 30000 102 103 60 70 80 200 300 400 500 600 700 800 IRM(A) 30 -diT/dt (A/µs) 1 10 2 3 4 5 6 7 8 9 20 30 I TRM = 3000 A Tj = Tjmax 5STB 17N5200 Fig. 10 Recovery charge vs. decay rate of onstate current. Fig. 11 Peak reverse recovery current vs. decay rate of on-state current. Turn - off time, typical parameter relationship. 0 4 8 12 16 20 24 28 32 diT/dt (A/µs) 1.0 1.1 1.2 1.3 5STB 17N5200 f (-di /dt) 2 T - Fig. 12 tq/tq1 = f1(Tj) Fig. 13 tq/tq1 = f2(-diT/dt) Fig. 14 tq/tq1 = f3(dv/dt) tq = tq1 • f1(Tj ) • f2(-diT/dt) • f3(dv/dt) tq1 :at normalized values (see page 2) tq : at varying conditions
5sTB17N5200 Turn-on and turn-off losses 品知 Fig. 15 Won=f(lT, tp), T=125C Fig. 16Won=f(lT, dildo), T=125C Half sinusoidal waves Rectangular waves Fig. 17Woff=f(Vo, IT),T=125C Fig. 18Woft=f(Vo, dildt, T=125C. Half sinusoidal waves. tp= 10 ms. Rectangular waves =PT+Wnf+W节 Wo at VRRM VG =1,3-4.5 ABB Semiconductors AG reserves the right to change specifications without notice ABB Semiconductors AG Doc. No. 5SYA1036-03 Sep 01 Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone+41(0)628886419 Fax Emailabbsem@ch.abb.com Internet w.abbsem. com
5STB 17N5200 ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Doc. No. 5SYA1036-03 Sep. 01 Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email abbsem@ch.abb.com Internet www.abbsem.com Turn-on and Turn-off losses 012345678 I T (kA) 0 1 2 3 4 5 Won (Ws/pulse) tp = 1 ms tp = 2 ms tp = 5 ms tp = 10 ms 5STB 17N5200 012345678 I T (kA) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Won (Ws/pulse) di/dt = 10 A/µs di/dt = 5 A/µs di/dt = 2 A/µs di/dt = 1 A/µs 5STB 17N5200 Fig. 15Won = f(IT, tP), Tj = 125 °C. Half sinusoidal waves. Fig. 16Won = f(IT, di/dt), Tj = 125 °C. Rectangular waves. 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 V0 (kV) 0 1 2 3 4 5 6 7 8 9 10 Woff (Ws/pulse) I TRM = 8000 A I TRM = 6000 A I TRM = 4000 A 5STB 17N5200 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 V0 (kV) 0 2 4 6 8 10 12 14 16 18 Woff (Ws/pulse) di/dt = 10 A/µs di/dt = 5 A/µs di/dt = 2 A/µs di/dt = 1 A/µs 5STB 17N5200 Fig. 17Woff = f(V0, IT), Tj = 125 °C. Half sinusoidal waves. tP = 10 ms. Fig. 18Woff = f(V0,di/dt), Tj = 125 °C. Rectangular waves