第7卷第6期 智能系统学报 Vol.7 No.6 2012年12月 CAAI Transactions on Intelligent Systems Dec.2012 D0I:10.3969/i.i8sn.1673-4785.201207032 网络出版t地址:htp://www.cnki.net/kcma/detail/23.1538.TP.20121116.1800.014.html 基于差分进化算法的认知无线电决策引擎 毕晓君,李安宁 (哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001) 摘要:针对认知系统的工作参数调整问题,提出基于差分进化算法的认知无线电决策引擎算法.利用差分算法设 置参数少、寻优能力强、不易于陷人局部最优等特点,实现认知系统根据工作环境变化和用户需求自适应调整工作 参数.仿真结果表明,在多载波通信系统中,与协进化粒子群算法相比,提出的算法能增强系统的整体性能,提高系 统的工作效率. 关键词:认知无线电;决策引擎;差分进化算法:多载波通信;协进化粒子群算法 中图分类号:TP391文献标志码:A文章编号:16734785(2012)06054205 Cognitive radio decision engine based on the different evolution algorithm BI Xiaojun,LI Anning (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China) Abstract:According to the problem of working parameter's adjustment in cognitive radio system,this paper puts forward a cognitive radio decision engine based on the differential evolution algorithm.Using less parameters,good ability of finding the best,avoiding getting into local optimality,we can make the cognitive radio system adjust working parameters according to the change in working environment and the user requirement.The simulation re- sults show that the algorithm in this paper performs better in the whole function and work efficiency of the system than coevolutionary particle swarm optimization algorithm. Keywords:cognitive radio;decision engine;differential evolution algorithm;multi-carrier communication;coevo- lutionary particle swarm 近年来,认知无线电被认为是克服频谱资源紧缺 收敛速度慢、易于早熟等问题,导致优化效率比较低; 和提高通信效率最具有前景的技术,其中认知能力 文献[4]提出了二进制粒子群算法,虽然在收敛速度上 和重配置能力是认知无线电系统必须具备的两大基本 有所提高,但仍易陷人局部最优.而目前效果最好的方 功能2].而认知决策引擎是实现重配置能力的关键技 法是基于协进化粒子群算法(coevolutionry particle swarm 术,它根据感知到的环境参数,对多个目标进行参数优 optimization,CPS0)的认知决策引孳s],与其他算法相 化,可减小发射功率、降低系统误码率和增大数据传输 比,在一定程度上可以提高系统的整体性能,但在易陷 速率等,从而提高通信效率目前关于认知无线电决策 入局部最优和优化时间方面仍有待进一步提高. 引擎问题的研究尚属起步阶段,文献成果较少.其中文 差分进化算法是近年兴起的目前效果最好的优 献[3]将遗传算法应用到决策引擎中,但遗传算法存在 化算法,查阅现有文献,还没有将差分进化算法应用 到认知无线电决策引擎的研究成果.为此本文进行 收稿日期:201207-23.网络出版日期:2012-11-16. 基金项目:国家自然科学基金资助项目(61175126);中央高校基本科 了探索和尝试,提出一种基于二进制差分算法的认 研业务费专项资金资助项目(HEUCFZ1209);教育部博士 点基金资助项目(20112304110009). 知无线电决策引擎,实验仿真结果表明,它可以在更 通信作者:毕晓君.E-mail:bixiaojun@hrbeu.e.cm. 短的时间内,获得更适合系统的工作参数,使系统整
第6期 毕晓君,等:基于差分进化算法的认知无线电决策引擎 ·543· 体性能有较大幅度的提高 所有子载波的平均功率, 1认知无线电决策引擎模型 2)最小化误码率: 认知无线电系统不仅需要适应动态变化的无线 Fruindoer 1-1g0.5 lg Pbe (4) 环境,还需要考虑到用户的应用需求、遵守特定频段 式中:P为所有子信道的平均误码率,定义0.5为 的频谱特性和传播特性等参数;因此,认知决策引擎 系统所能容忍的误码率最大值,不同调制方式误码 所要解决的问题可以描述成多目标优化问题,通过 率计算公式不同,为了能够与文献[5]进行有效的 调整自身参数来实现多个目标最佳的性能组合[6]. 性能对比,本文也选用AWGN信道条件,则M-PSK 假设认知无线电需要调整的参数为 的误码率如式(5)所示, x=[x1x2…xm] etc(in(分)VbM西 式中:m为参数的个数。 Pbe lbM (5) min/maxif =(fi(x)f (x),f (x)).(1) 而M-QAM的误码率如式(6)所示. 式中:f=(f,,…,fn)表示所要实现的各目标函 数,为目标函数个数,则认知决策引擎所要解决的 m=1-ea(√2). (6) M 优化问题可以表示为式(1)的形式: 式中:M为调制进制数,y为信噪比,erfc为互补误 x∈X, fx)=(f(x),i(x),…fn(x)∈F. 差函数 式中:X代表所要调整参数的约束空间,F代表目标 3)最大化数据速率: 函数适应度值的约束空间们 bM,-bMa= N台 实际上,不同的信道条件和用户需求导致目标 IbMe -lbMin (7) 函数的侧重程度也不相同,例如在多媒体通信中,侧 式中:N为子载波数目,M:为第i个子载波的调制进 重点是最大化数据传输速率;在数据通信中,侧重点 制数,M为最小调制进制数,Mns为最大调制进 是最小化误比特率.因此,大部分文献采用式(2)的 制数 形式将复杂的多目标函数优化问题转换成单目标优 由此认知决策引擎所要优化的目标函数可以表 化问题,通过权值的不同来满足各用户对不同目标 示为式(8)的形式: 偏好程度的需求 f=41 fmin-pomer+2fmnbcr3/maxdatarote (8) f=wfo (2) 2 差分进化算法 式中:0:≥0,i=1,2,…,n,01+w2+…+0m=1.0 2.1标准差分进化算法 为各个目标函数的权值,权值越大代表对该目标的 差分进化算法(differential evolution,DE)是 偏好程度越大,反之亦然。 本文与文献[8]相同,根据多载波频谱环境、用 1995年由Stom等提出的一种群体智能优化算 法9],2005年被引入国内.DE算法具有记忆个体最 户需求以及频谱限制,选取最小化传输功率、最小化 误码率以及最大化数据速率3个目标函数作为认知 优解和种群内信息共享的特点,通过种群内个体的 决策引擎的重点,进行参数优化.虽然文献[5]中将 合作与竞争来实现对优化问题的求解,其本质是一 最大化吞吐量也作为一个目标函数,但是系统吞吐 种基于实数编码的具有保优思想的贪婪遗传算法 量主要由系统误码率决定,最小化误码率就可以保 算法首先在问题的可行解空间随机初始化种群 证最大化系统吞吐量,因此没有必要再引入最大化 心=[xx}…x],Np为种群规模,个体= 吞吐量这一目标函数.3个目标函数的归一化表达 [x1x2…x.o]用于表征问题解,D为优化问 式分别为: 题的维数.算法的基本思想是:对当前种群进行变异 1)最小化传输功率: 和交叉操作,产生另一个新种群,然后利用基于贪婪 rinpome=1-卫 思想的选择操作来对这2个种群进行一对一的选 (3) Pmax 择,从而产生新一代种群.具体而言,首先通过对每 式中:P为子载波所能达到的最大传输功率,p为 一个在第t代的个体x进行变异操作,得到与其相
.544 智能系统学报 第7卷 对应的变异个体,如式(9)所示 题解空间都是通过0和1编码,如果直接进行变异 =x+F(2-xa). (9) 操作所得到的变异个体可能不符合解空间取值范围 式中:1,2,3∈{1,2,…,Np}互不相同且与i不同; 的限制,所以进行以下操作,首先按照式(12)把解 x为父代基向量,x2-x名为父代差分向量;F为变 向量映射到[0,1]: 异因子.然后,对个体x由式(9)生成的变异个体 0.5rand, f(x)= x=0; (12) 实施交叉操作,生成试验个体*1,如式(10)所示. 0.5+0.5rand,x=1. 然后针对变异操作后不在[0,1]的解按照sigmoid = (rand(j)PcR)orj=jrmna; 其他。 函数映射到该范围内,如式(13)所示. (10) 1 sigmoid()=1(13) 式中:rand(j)为[0,1]的均匀分布随机数;Pcm为[0, 最后在交叉操作之前再将解重新解码成由0和1组 1]的交叉概率;jad为{1,2,…,D}之间的随机量. 成的解,如式(14)所示。 利用式(8)对试验个体*1和x的目标函数进行 r0,x∈[0,0.5); 比较,对于最大化问题,则选择目标函数值较低的个 x)={1,¥e[0.5,1小: (14) 体作为新种群的个体x+',如式(11)所示 除了以上不同之外,二进制差分算法与标准差分算 x1= 4,f4*)>f): (11) 法类似, xi. 其他. 式中:∫为目标函数。 3基于BDE算法的认知决策引擎 DE算法流程图如图1所示。 在式(8)中,首先需要确定3个目标函数对应 开始 的权重值,为此本文采用文献[11]提供的权重值, 具体如表1所示. 初始化差分种饼 表1目标函数的权重设置 Tabel 1 The settings of the weight of the objective function 计算种群的适应度 权重 模式1 模式2 模式3 01 0.80 0.15 0.05 通过基于运动补偿的变异操作 产生新个休,并与父代一对 02 0.15 0.80 0.15 比较,保留优秀个体 03 0.05 0.05 0.80 实际上,不同的权重值代表了系统不同的工作 是否满见 N 终止条件 模式.模式1侧重于最小化传输功率,适用于低功耗 情况;模式2侧重于最小化误码率,适用于可靠性要 Y 求较高的情况:模式3侧重于最大化数据速率,适用 输出最优结果 于对数据速率要求高的情况, 本文采用BDE算法对式(8)进行寻优计算,以 结束 获得认知决策引擎的最优参数组合,其具体的步骤 图1差分进化算法流程 如下: Fig.1 Flowchart of DE 1)设定参数:设定算法终止条件即种群最大迭 2.2二进制差分进化算法 代次数Maxg,初始群体规模POPSIZE,每个个体的 最初的DE算法主要针对解决连续空间函数优 维数为codelength,子载波数目N. 化问题,为解决离散优化问题,文献[10]提出一种 2)生成初始种群:随机生成一个POPSIZE行 二进制差分算法(binary differential evolution,BDE), codelength列的矩阵,其中每行表示一个个体. 可以有效解决离散函数优化问题. 3)计算适应度:对于每个个体分别将N个子载 与标准差分算法相比,BDE的不同之处在于问 波的功率和调制方式进行解码,根据式(3)~(7)计
第6期 毕晓君,等:基于差分进化算法的认知无线电决策引擎 ·545· 算fi血-poweri-ber和minte,然后根据式(8)及表1 0.82 计算每个个体的适应度值, 0.80 4)差分和交叉算子操作:对于每个父代个体, 0.78 从父代种群中随机选取2个不同的个体,并根据式 三0.76 (9)产生变异后新的子代;根据式(10)生成交叉后 的新个体 运0.4 5)选择操作:将变异和交叉前后的个体进行适 0.72 --·BDE 应度比较,较优的个体保留下来进入下一代。 0.70 CPSO 6)重复3)~5),直到满足终止条件,其中最大 0.686 ×10 2 3 4 5.6 78910 适应度值对应的解就是最佳工作参数组合 迭代次数 4实验仿真与结果分析 (b)模式2 0.95 为验证本文提出算法应用于认知决策引擎的效 0.90 果,这里进行了仿真实验,并与目前效果最好的CP 0.85 S0算法5进行对比,从而证明本文提出算法的有效 080 性和先进性.实验是在Inter core i7CPUQ720, 赵0.75 1.6GHz、内存4GB的计算机上运行,程序采用Mat 四0.701 lab2010b版本编写.仿真环境是基于多载波通信系 0.65 统,采用32个子载波,为了模拟信道的衰落,为每个 0.60 ePso 子载波分配一个区间为[0,1]的随机数.发射功率 0.512方456 10 78910 为0~25.2dBm,步长间隔0.4dBm,编码由6位二 迭代次数 进制比特组成,调制方式可能为BPSK、QPSK (c)模式3 16QAM和64QAM,由2位二进制比特进行编码,因 图22种算法适应度对比 此每个子载波功率和调制方式由8位比特进行编 Fig.2 The comparison of the fitness in twoalgorithms 码.信道类型为AWGN,噪声功率为0dBm,路径损 从图2中可以看出,在3种模式下CPS0算法 耗为0dB].在BDE算法中PcR=0.6,F=0.1.在 都陷入局部最优后,适应度值不再变化,同时算法结 CPS0算法中,c1=2,c2=2,vmm=4,0=1.2种算法 束后最优个体的适应度值都低于本文BDE算法,说 初始种群为30,迭代次数为1000, 明不能保证每次发现全局最优解;而本文BDE算法 本文BDE算法与CPS0算法对3种模式分别 可以在CPS0算法陷入局部最优后,仍可以通过不 进行30次独立的仿真实验,最后对30次仿真结果 断迭代提高适应度值,最终准确发现全局最优解,说 平均.图2分别给出了3种模式下平均目标函数值 明本文BDE算法的全局寻优能力强于CPSO算法. 随迭代次数的变化情况, 同时BDE算法在3种模式下目标函数适应度值都 0.95 高于CPSO,说明在最小化功率、最小化误码率和最 0.90 大化数据速率3个目标综合评价下,基于BDE的认 0.85 知决策引擎在不同工作模式下整体优化性能都要优 g0.80 于基于CPS0的认知决策引擎. 举0.75 归0.70 表2给出了2种算法在不同模式下30次独立 实验的平均运行时间和各目标工作性能.从表2可 0.65 ----BDE 以看出,与目前效果最好的CS0算法相比,本文算 0.60 -CPSO 0.556 1234567 送代次数 900 法在3种模式下所需要的运行时间明显少于CPS0 算法所需时间,说明本文算法的认知决策引擎速度 快于基于CS0的认知决策引擎.同时在模式1下, (a)模式1 本文算法优化后的平均功率明显小于CPS0算法优
546 智能系统学报 第7卷 化后结果,降低了系统的功率损耗:在模式2下,本 tronika 2009.Bratisalava,Slovakia,2009:251-254. 文算法优化后的平均误码率远远小于CPS0算法的 [5]赵知劲,张伟卫,彭振,等.基于协进化粒子群优化的认知 结果,提高了通信质量;在模式3下,本文算法优化 决策引擎[J].计算机工程,2011,37(3):163-165. 后的数据速率大于CPSO算法的结果,提高了系统 ZHAO Zhijin,ZHANG Weiwei,PENG Zhen,et al.Cognitive decision engine based coevolutionry particle swarm optimization 的通信效率。 [J].Computer Engineering,2011,37 (3):163-165. 表22种算法优化时间及结果对比 [6]赵知劲,徐世宇,郑仕链,等.基于二进制粒子群算法 Tabel 2 The time and results of two algorithms 的认知无线电决策引擎[J].物理学报,2009,58(7): 平均数据 51185125. 通信 运行 平均功平均误 算法 ZHAO Zhijin,XU Shiyu,ZHENG Shilian,et al.Cognitive ra- 模式 速率/ 时间/g 率/dhm 码率 (Mh·s-1) dio decision engine based on binary particle swarm optimization BDE 16.5 0.02170.2538 6.0000 [J].Acta Physica Sincia,2009,58(7):5118-5125. 模式1 CPSO 34.1 0.65540.2505 [7]焦传海,王可人.一种基于免疫遗传算法的认知决策引 5.9604 擎[J].系统工程与电子技术,2010,32(5):1083-1087. BDE 14.9 15.82581.2×10-51.6865 模式2 JIAO Chuanhai,WANG Keren.Cognitive radio decision CPSO 37.2 16.12372.9×10-41.9896 based on immune genetic algorithm[J].Systems Engineer- BDE 16.916.31880.0701 6.0000 ing and Electronics,2010,32(5):1083-1087. 模式3 [8]WU D,WANG F,YANG S Y.Cognitive radio decision en- CPS038.517.30960.06345.9646 gine based on priori knowledge[C]//Proceedings of 3rd In- 综上所述,本文提出的基于BDE算法的认知决 ternational Symposium on Parallel architectures,Algorithms 策引擎整体优化性能优于基于CPS0的认知决策引 and Programming.Dalian,China,2009:346-349. 擎,并且工作效率和对偏好目标工作性能都明显优 [9]毕晓君,王义新.多模态函数优化的拥挤差分进化算法 于CPS0算法. [J].哈尔滨工程大学学报,2011,32(2):223-227. BI Xiaojun,WANG Yixin.Multimodal function optimization 5结束语 using a crowding differential evolution[J].Joumal of Har 针对认知无线电决策引擎调整工作参数问题, bin Engineering University,2011,32(2):223-227. [10]DENG C S,ZHAO B Y,YANG Y L,et al.Novel binary 本文提出了一种基于BDE算法的认知决策引孳算 differential evolution algorithm for discrete optimization 法.实验仿真结果表明,本文提出的算法能够快速得 [C]//5th International Conference on Natural Computa- 到最佳工作参数,同时使整体优化性能更好,并且在 tion.Tianjin,China,2009:346-349. 不同模式下针对主要优化目标取得更好的工作性 [11]NEWMAN T R.Cognitive engine implementation for wire- 能,更适合解决认知决策引擎实际问题,在认知无线 less multicarrier transceivers[J].Wireless Communica- 电系统中具有一定的实用价值。 tions and Mobile Computing,2007,7(1):1129-1142. 作者简介: 参考文献: 毕晓君,女,1964年生,教授,博士 [1]NEWMAN T R,RAJBANSHI R,WYGLINSKI A M,et al. 生导师,博士,主要研究方向为信息智 Population adaptation for genetic algorithm cognitive radios 能处理技术、智能优化算法、数字图像 [C]//Proceedings of the 2nd International Conference on 处理等,作为项目负责人或主要研究 Cognitive Radio Oriented Wireless Networks and Communi- 者,先后承担国防基础预研项目、“十一 cations.Orland,USA,2007:279-284. 五”预研项目以及省部级科研项目11 [2]郭彩丽,冯春燕,曾志民.认知无线电网络技术及应用 项,国家自然科学基金1项、教育部博士点基金1项,获省部级 [M].北京:电子工业出版社,2010:14-15. 科学技术进步二等奖3项、三等奖4项发表学术论文多篇, [3 ]ZHANG X Q,HUANG Y Q,JIANG H,et al.Design of cognitive radio node engine based on genetic algorithm 李安宁,男,1987年生,硕士研究 [C]//2009 WASE International Conference on Information 生,主要研究方向为智能优化算法和认 Engineering.Taiyuan,China,2009:22-25. 知无线电 4]POVALAC K,MARSALEK R.Adjusting of the multicarrier communication system using binary particle swarm optimization [C]//Proceedings of 19th Interational Conference Radioelek-