第三章、经典单方程计量经济学模型:多元线性回归模型 、内容提要 本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的 情形相同。主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方 面的应用等方面。只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充 本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。与一元回 归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性 这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是 否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的 内在联系。 本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如 何转化为线性回归模型的常见类型与方法。这里需要注意各回归参数的具体经济含义。 本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约 束检验。参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检 验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与 邹氏预测检验两种类型的检验。检验都是以F检验为主要检验工具,以受约東模型与无约 束模型是否有显著差异为检验基点。参数的非线性约束检验主要包括最大似然比检验、沃尔 德检验与拉格朗日乘数检验。它们仍以估计无约束模型与受约束模型为基础,但以最大似然 原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的x2分布为检验统计 量的分布特征。非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用 、典型例题分析 例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 ed=10.36-0.094sibs+0.13lmed+0.210fedh R2=0.214 式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分 别为母亲与父亲受到教育的年数。问
第三章、经典单方程计量经济学模型:多元线性回归模型 一、内容提要 本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的 情形相同。主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方 面的应用等方面。只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。 本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。与一元回 归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性 这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是 否对被解释变量有显著线性影响关系的联合性 F 检验,并讨论了 F 检验与拟合优度检验的 内在联系。 本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如 何转化为线性回归模型的常见类型与方法。这里需要注意各回归参数的具体经济含义。 本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约 束检验。参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检 验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与 邹氏预测检验两种类型的检验。检验都是以 F 检验为主要检验工具,以受约束模型与无约 束模型是否有显著差异为检验基点。参数的非线性约束检验主要包括最大似然比检验、沃尔 德检验与拉格朗日乘数检验。它们仍以估计无约束模型与受约束模型为基础,但以最大似然 原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的 2 分布为检验统计 量的分布特征。非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。 二、典型例题分析 例 1.某地区通过一个样本容量为 722 的调查数据得到劳动力受教育的一个回归方程为 edu = 10.36 − 0.094sibs + 0.131medu + 0.210 fedu R 2=0.214 式中,edu 为劳动力受教育年数,sibs 为该劳动力家庭中兄弟姐妹的个数,medu 与 fedu 分 别为母亲与父亲受到教育的年数。问
(1)sbs是否具有预期的影响?为什么?若medu与fedu保持不变,为了使预测的受教 育水平减少一年,需要sibs增加多少? (2)请对medu的系数给予适当的解释。 (3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另 个的父母受教育的年数为16年,则两人受教育的年数预期相差多少? 解答: (1)预期sbs对劳动者受教育的年数有影响。因此在收入及支出预算约束一定的条件 下,子女越多的家庭,每个孩子接受教育的时间会越短。 根据多元回归模型偏回归系数的含义,sibs前的参数估计值-0.094表明,在其他条件不 变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育 的时间,兄弟姐妹需增加1/0.094=10.6个 (2)medu的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1 年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。 (3)首先计算两人受教育的年数分别为 10.36+0.131×12+0.210×12=14452 10.36+0.131×16+0.210×16=15816 因此,两人的受教育年限的差别为15.816-14452=1.364 例2.以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1) 与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下: Y=0472+0.32lg(X1)+0.05X2 (1.37)(0.22) (0046) R2=0099 其中括号中为系数估计值的标准差 (1)解释log(X1)的系数。如果X1增加10%,估计Y会变化多少个百分点?这在经济 上是一个很大的影响吗? (2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假 设。分别在5%和10%的显著性水平上进行这个检验。 (3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响? 解答: (1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y变化的单位数, 即△Y=0.32△log(X1)0.32(△X1/X1)=0.32×100%,换言之,当企业销售X1增长100%时,企 业研发支出占销售额的比重Y会增加0.32个百分点。由此,如果ⅹ1增加10%,Y会增加 0.032个百分点。这在经济上不是一个较大的影响 (2)针对备择假设Hl:B1>0,检验原假设H0:B1=0。易知计算的t统计量的值 为t=0.32022=1468。在5%的显著性水平下,自由度为32-3=29的t分布的临界值为1.699 (单侧),计算的t值小于该临界值,所以不拒绝原假设。意味着R&D强度不随销售额的增 加而变化。在10%的显著性水平下,t分布的临界值为1.31l,计算的t值小于该值,拒绝 原假设,意味着R&D强度随销售额的增加而增加。 (3)对X2,参数估计值的t统计值为005/046=1087,它比在10%的显著性水平下的 临界值还小,因此可以认为它对Y在统计上没有显著的影响
(1)sibs 是否具有预期的影响?为什么?若 medu 与 fedu 保持不变,为了使预测的受教 育水平减少一年,需要 sibs 增加多少? (2)请对 medu 的系数给予适当的解释。 (3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为 12 年,另一 个的父母受教育的年数为 16 年,则两人受教育的年数预期相差多少? 解答: (1)预期 sibs 对劳动者受教育的年数有影响。因此在收入及支出预算约束一定的条件 下,子女越多的家庭,每个孩子接受教育的时间会越短。 根据多元回归模型偏回归系数的含义,sibs 前的参数估计值-0.094 表明,在其他条件不 变的情况下,每增加 1 个兄弟姐妹,受教育年数会减少 0.094 年,因此,要减少 1 年受教育 的时间,兄弟姐妹需增加 1/0.094=10.6 个。 (2)medu 的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加 1 年受教育的机会,其子女作为劳动者就会预期增加 0.131 年的教育机会。 (3)首先计算两人受教育的年数分别为 10.36+0.13112+0.21012=14.452 10.36+0.13116+0.21016=15.816 因此,两人的受教育年限的差别为 15.816-14.452=1.364 例 2.以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1) 与利润占销售额的比重(X2)为解释变量,一个有 32 容量的样本企业的估计结果如下: 0.099 (1.37) (0.22) (0.046) 0.472 0.32log( ) 0.05 2 1 2 = = + + R Y X X 其中括号中为系数估计值的标准差。 (1)解释 log(X1)的系数。如果 X1 增加 10%,估计 Y 会变化多少个百分点?这在经济 上是一个很大的影响吗? (2)针对 R&D 强度随销售额的增加而提高这一备择假设,检验它不虽 X1 而变化的假 设。分别在 5%和 10%的显著性水平上进行这个检验。 (3)利润占销售额的比重 X2 对 R&D 强度 Y 是否在统计上有显著的影响? 解答: (1)log(x1)的系数表明在其他条件不变时,log(x1)变化 1 个单位,Y 变化的单位数, 即Y=0.32log(X1)0.32(X1/X1)=0.32100%,换言之,当企业销售 X1 增长 100%时,企 业研发支出占销售额的比重 Y 会增加 0.32 个百分点。由此,如果 X1 增加 10%,Y 会增加 0.032 个百分点。这在经济上不是一个较大的影响。 (2)针对备择假设 H1:1 0 ,检验原假设 H0:1 = 0 。易知计算的 t 统计量的值 为 t=0.32/0.22=1.468。在 5%的显著性水平下,自由度为 32-3=29 的 t 分布的临界值为 1.699 (单侧),计算的 t 值小于该临界值,所以不拒绝原假设。意味着 R&D 强度不随销售额的增 加而变化。在 10%的显著性水平下,t 分布的临界值为 1.311,计算的 t 值小于该值,拒绝 原假设,意味着 R&D 强度随销售额的增加而增加。 (3)对 X2,参数估计值的 t 统计值为 0.05/0.46=1.087,它比在 10%的显著性水平下的 临界值还小,因此可以认为它对 Y 在统计上没有显著的影响
例3.下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计 值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。数据为美国40个城市 的数据。模型如下: housin g=B.+B,density+Bvalue+B, income+ B popchang +B,unemp+ B localtax +B,statetax+u 式中 housing-—实际颁发的建筑许可证数量, density.--每平方英里的人口密度, value 自由房屋的均值(单位:百美元), Income-平均家庭的收入(单位:千美元), pophung 1980-1992年的人口增长百分比, unemp-—失业率, localtax-—人均交纳的地方税 etax-人均缴纳的州税 变量 模型A 模型B 模型C 模型D 813(0.74) L-392(081) 1279(0.34) 973(0.44) Density 0075(043)0062(032)042(047 0.873(0.11) -0.994(006) Income 1104(0.14)13303(04) 125.71(0.05) 11660(0.06) Popchang 6.77(0.11) 29.19(0.06) 2941(0.001) 2486(0.08) U 55(0.48) 0.06100.95 Statetax 1.006(0.40) 004(0.37) RSS 4.763e+7 4.843e+7 4.962e+7 5.038e+7 0.349 0.338 0.322 0.312 1488e+6 1424e+6 1.418e+6 1.399+6 1.776e+6 1.634e+6 1.593e+6 1.538e+6 (1)检验模型A中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p 值)。根据检验结果,你认为应该把变量保留在模型中还是去掉? (2)在模型A中,在10‰%水平下检验联合假设H:β1=0(i=1,5,6,7)。说明被择假设,计 算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。说明你的 结论 (3)哪个模型是“最优的”?解释你的选择标准 (4)说明最优模型中有哪些系数的符号是“错误的”。说明你的预期符号并解释原因。确认 其是否为正确符号。 解谷: (1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表。根据题意,如果 p-值<0.10,则我们拒绝参数为零的原假设 由于表中所有参数的p-值都超过了10%,所以没有系数是显著不为零的。但由此去掉所 有解释变量,则会得到非常奇怪的结果。其实正如我们所知道的,多元回去归中在省略变量 时一定要谨慎,要有所选择。本例中, value、 Income、 popchang的p-值仅比0.1稍大一点, 在略掉 unemp、 localtax、 statetax的模型C中,这些变量的系数都是显著的 (2)针对联合假设H 0(i=1,5,6,7)的备择假设为H:β1=0(i=1,5,6,7) 中至少有一个不为零。检验假设H0,实际上就是参数的约束性检验,非约束模型为模型A
例 3.下表为有关经批准的私人住房单位及其决定因素的 4 个模型的估计量和相关统计 值(括号内为 p-值)(如果某项为空,则意味着模型中没有此变量)。数据为美国 40 个城市 的数据。模型如下: + + + + = + + + + unemp localtax statetax hou g density value income popchang 5 6 7 0 1 2 3 4 sin 式中 housing——实际颁发的建筑许可证数量,density——每平方英里的人口密度,value— —自由房屋的均值(单位:百美元),income——平均家庭的收入(单位:千美元),popchang ——1980~1992 年的人口增长百分比,unemp——失业率,localtax——人均交纳的地方税, statetax——人均缴纳的州税 变量 模型 A 模型 B 模型 C 模型 D C 813 (0.74) -392 (0.81) -1279 (0.34) -973 (0.44) Density 0.075 (0.43) 0.062 (0.32) 0.042 (0.47) Value -0.855 (0.13) -0.873 (0.11) -0.994 (0.06) -0.778 (0.07) Income 110.41 (0.14) 133.03 (0.04) 125.71 (0.05) 116.60 (0.06) Popchang 26.77 (0.11) 29.19 (0.06) 29.41 (0.001) 24.86 (0.08) Unemp -76.55 (0.48) Localtax -0.061 (0.95) Statetax -1.006 (0.40) -1.004 (0.37) RSS 4.763e+7 4.843e+7 4.962e+7 5.038e+7 R 2 0.349 0.338 0.322 0.312 2 ˆ 1.488e+6 1.424e+6 1.418e+6 1.399e+6 AIC 1.776e+6 1.634e+6 1.593e+6 1.538e+6 (1)检验模型 A 中的每一个回归系数在 10%水平下是否为零(括号中的值为双边备择 p- 值)。根据检验结果,你认为应该把变量保留在模型中还是去掉? (2)在模型 A 中,在 10%水平下检验联合假设 H0:i =0(i=1,5,6,7)。说明被择假设,计 算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。说明你的 结论。 (3)哪个模型是“最优的”?解释你的选择标准。 (4)说明最优模型中有哪些系数的符号是“错误的”。说明你的预期符号并解释原因。确认 其是否为正确符号。 解答: (1)直接给出了 P-值,所以没有必要计算 t-统计值以及查 t 分布表。根据题意,如果 p-值<0.10,则我们拒绝参数为零的原假设。 由于表中所有参数的 p-值都超过了 10%,所以没有系数是显著不为零的。但由此去掉所 有解释变量,则会得到非常奇怪的结果。其实正如我们所知道的,多元回去归中在省略变量 时一定要谨慎,要有所选择。本例中,value、income、popchang 的 p-值仅比 0.1 稍大一点, 在略掉 unemp、localtax、statetax 的模型 C 中,这些变量的系数都是显著的。 (2)针对 联合假设 H0 :i =0(i=1,5,6,7)的备择假 设为 H1:i =0(i=1,5,6,7) 中至少有一个不为零。检验假设 H0,实际上就是参数的约束性检验,非约束模型为模型 A
约束模型为模型D,检验统计值为 F (RSS-RSSU)/ku-kg)(5038e+7-4763e+7)(7-3) 0.462 RSSu/(n-ku-D) (4.763e+7)/(40-8) 显然,在HO假设下,上述统计量满足F分布,在10%的显著性水平下,自由度为(4,32) 的F分布的临界值位于209和2.14之间。显然,计算的F值小于临界值,我们不能拒绝 H0,所以βi(i=1,5,6,7)是联合不显著的。 (3)模型D中的3个解释变量全部通过显著性检验。尽管R2与残差平方和较大,但相 对来说其AIC值最低,所以我们选择该模型为最优的模型 (4)随着收入的增加,我们预期住房需要会随之增加。所以可以预期β3>0,事实上其 估计值确是大于零的。同样地,随着人口的增加,住房需求也会随之增加,所以我们预期β 4>0,事实其估计值也是如此。随着房屋价格的上升,我们预期对住房的需求人数减少,即 我们预期β3估计值的符号为负,回归结果与直觉相符。出乎预料的是,地方税与州税为不 显著的。由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。虽然模型 A是这种情况,但它们的影响却非常微弱 4、在经典线性模型基本假定下,对含有三个自变量的多元回归模型: Bo+BX+B2x2+BX3+u 你想检验的虚拟假设是H0:B1-2B2=1。 (1)用B1,B2的方差及其协方差求出Ham(B1-2B2) (2)写出检验H0:B1-2B2=1的t统计量 (3)如果定义B1-2B2=6,写出一个涉及β0、0、B2和β3的回归方程,以便能直接得 到θ估计值及其标准误 解答 1)由数理统计学知识易知 an(B1-2B2)=am(B1)-4Cov(B1,A2)+4ar(B2,) (2)由数理统计学知识易知 B1-2B2 其中se(B1-2B2)为(B1-2B2)的标准差 se(B-2B, (3)由B1-2B2=6知B=b+2B2,代入原模型得 Y=B+(6+2B2)X1+B2X2+B3X3+ =B+X1+B2(2X1+X2)+B3X3+ 这就是所需的模型,其中θ估计值θ及其标准误都能通过对该模型进行估计得到
约束模型为模型 D,检验统计值为 0.462 (4.763 7)/(40 8) (5.038 7 4.763 7)/(7 3) /( 1) ( )/( ) = + − + − + − = − − − − = e e e RSS n k RSS RSS k k F U U R U U R 显然,在 H0 假设下,上述统计量满足 F 分布,在 10%的显著性水平下,自由度为(4,32) 的 F 分布的临界值位于 2.09 和 2.14 之间。显然,计算的 F 值小于临界值,我们不能拒绝 H0,所以βi(i=1,5,6,7)是联合不显著的。 (3)模型 D 中的 3 个解释变量全部通过显著性检验。尽管 R2 与残差平方和较大,但相 对来说其 AIC 值最低,所以我们选择该模型为最优的模型。 (4)随着收入的增加,我们预期住房需要会随之增加。所以可以预期β3>0,事实上其 估计值确是大于零的。同样地,随着人口的增加,住房需求也会随之增加,所以我们预期β 4>0,事实其估计值也是如此。随着房屋价格的上升,我们预期对住房的需求人数减少,即 我们预期β3 估计值的符号为负,回归结果与直觉相符。出乎预料的是,地方税与州税为不 显著的。由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。虽然模型 A 是这种情况,但它们的影响却非常微弱。 4、在经典线性模型基本假定下,对含有三个自变量的多元回归模型: Y = 0 + 1X1 + 2X2 + 3X3 + 你想检验的虚拟假设是 H0: 1 − 2 2 =1。 (1)用 1 2 ˆ , ˆ 的方差及其协方差求出 ) ˆ 2 ˆ ( Var 1 − 2 。 (2)写出检验 H0: 1 − 2 2 =1 的 t 统计量。 (3)如果定义 1 − 2 2 = ,写出一个涉及0、、2 和3 的回归方程,以便能直接得 到估计值 ˆ 及其标准误。 解答: (1)由数理统计学知识易知 ) ˆ ) 4 ( ˆ , ˆ ) 4 ( ˆ ) ( ˆ 2 ˆ ( Var 1 − 2 = Var 1 − Cov 1 2 + Var 2 (2)由数理统计学知识易知 ) ˆ 2 ˆ ( 1 ˆ 2 ˆ 1 2 1 2 − − − = se t ,其中 ) ˆ 2 ˆ (1 − 2 se 为 ) ˆ 2 ˆ (1 − 2 的标准差。 (3)由 1 − 2 2 = 知 1 = + 22 ,代入原模型得 = + + + + + = + + + + + 0 1 2 1 2 3 3 0 2 1 2 2 3 3 (2 ) ( 2 ) X X X X Y X X X 这就是所需的模型,其中估计值 ˆ 及其标准误都能通过对该模型进行估计得到
、习题 (一)基本知识类题型 1.解释下列概念: 1)多元线性回归 6)参数估计量的置信区间 2)虚变量 7)被解释变量预测值的置信区间 3)正规方程组 8)受约束回归 4)无偏性 )无约束回归 5)一致性 10)参数稳定性检验 3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是? 1)Y=Bo+B,X:+E 2)Y=Po+B, log X,+a 3)log Y=Po+B, log X,+a 4)Y=B0+B1(B2X1)+E = B BX 6)Y=1+B0(1-X)+E1 7)Y1=+B1X1+B2X2/10+6 3-3.多元线性回归模型与一元线性回归模型有哪些区别? 3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正 规方程组,能解出唯一的参数估计的条件是什么? 3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效 性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。 (二)基本证明与问答类题型 3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型 y=B+B1x1+B2x21+…+Bx+t1,i=1,2,…,n的正规方程组,及其推导过程
三、习题 (一)基本知识类题型 3-1.解释下列概念: 1) 多元线性回归 2) 虚变量 3) 正规方程组 4) 无偏性 5) 一致性 6) 参数估计量的置信区间 7) 被解释变量预测值的置信区间 8) 受约束回归 9) 无约束回归 10) 参数稳定性检验 3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是? 1) Yi Xi i = + + 3 0 1 2) Yi Xi i = + log + 0 1 3) Yi Xi i log = + log + 0 1 4) Yi Xi i = + ( ) + 0 1 2 5) i i i X Y = + 1 0 6) Yi Xi i = 1+ (1− ) + 1 0 7) Yi X i X i i = + + 10 + 0 1 1 2 2 3-3.多元线性回归模型与一元线性回归模型有哪些区别? 3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正 规方程组,能解出唯一的参数估计的条件是什么? 3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效 性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。 (二)基本证明与问答类题型 3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型: i i i k ki ui y = 0 + 1 x1 + 2 x2 ++ x + ,i = 1,2, ,n 的正规方程组,及其推导过程
3-8.对于多元线性回归模型,证明: (1)∑e (2)∑je=∑(成+Bx1+…+Bx)1=0 3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信 度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么? 3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否 有等价的作用? 3-11.设有模型:y=B+B1x1+B2x2+,试在下列条件下: (1)B1+B2=1 (2)B=B2 分别求出B1和B2的最小二乘估计量。 3-12.多元线性计量经济学模型 y=A+Bx+Bx2i+.+Pxk+u (2.11.1) 的矩阵形式是什么?其中每个矩阵的含义是什么?熟练地写出用矩阵表示的该模型的普通 最小二乘参数估计量,并证明在满足基本假设的情况下该普通最小二乘参数估计量是无偏和 有效的估计量。 3-13.有如下生产函数:hX=1.37+0.632hk+0452hL (0.257)(0.219) R2=0.98 Cov(bk,b)=0.055 其中括号内数值为参数标准差。请检验以下零假设: (1)产出量的资本弹性和劳动弹性是等同的 (2)存在不变规模收益,即a+B=1 3-14.对模型y=B+Bx1+B2x2x+…+Bkxk+l1应用OLS法,得到回归方程如下 =B+Bx+A2x+…+B 要求:证明残差6=y一与不相关,即:∑F=0
3-8.对于多元线性回归模型,证明: (1) ei = 0 (2) ) 0 ˆ ˆ ˆ ˆ ( yi ei = 0 + 1 x1i ++ k xki ei = 3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信 度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么? 3-10.在多元线性回归分析中, t 检验与 F 检验有何不同?在一元线性回归分析中二者是否 有等价的作用? 3-11.设有模型: y = 0 + 1 x1 + 2 x2 + u ,试在下列条件下: (1) 1 + 2 =1 (2) 1 = 2 分别求出 1 和 2 的最小二乘估计量。 3-12.多元线性计量经济学模型 y x x x i = + i + i + k ki i 0 1 1 2 2 + + i = 1,2,…,n (2.11.1) 的矩阵形式是什么?其中每个矩阵的含义是什么?熟练地写出用矩阵表示的该模型的普通 最小二乘参数估计量,并证明在满足基本假设的情况下该普通最小二乘参数估计量是无偏和 有效的估计量。 3-13.有如下生产函数: ln X =1.37 + 0.632ln K + 0.452ln L (0.257) (0.219) 0.98 2 R = Cov(bK ,bL ) = 0.055 其中括号内数值为参数标准差。请检验以下零假设: (1)产出量的资本弹性和劳动弹性是等同的; (2)存在不变规模收益,即 + = 1 。 3-14.对模型 i i i k ki ui y = 0 + 1 x1 + 2 x2 ++ x + 应用 OLS 法,得到回归方程如下: i i i k ki y x x x ˆ ˆ ˆ ˆ ˆ = 0 + 1 1 + 2 2 ++ 要求:证明残差 i i i = y − y ˆ 与 i y ˆ 不相关,即: y ˆ i i = 0。 3-15.
3-16.考虑下列两个模型 B1+B2x2+B3 I(v2-x2)=a1+a2x21+a3xy+ 要求:(1)证明:a2=B2 (2)证明:残差的最小二乘估计量相同,即:L.= (3)在何种情况下,模型Ⅱ的拟合优度R2会小于模型I拟合优度 3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人 数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两 个可能的解释性方程: 方程A:Y=1250-150X1-10X2+1.5X3 R2=0.75 方程B:=1230-140X1+55X2-37X4R2=0.73 其中:Y——某天慢跑者的人数 x1—该天降雨的英寸数 x2-—该天日照的小时数 K3——该天的最高温度(按华氏温度) X4——第二天需交学期论文的班级数 请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么? (2)为什么用相同的数据去估计相同变量的系数得到不同的符号? 3-18.对下列模型:y=a+x2+2=1+l1 (1) y=a+Ax-B=i+u 求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二乘估计值作比较: (3)y2=a+fx1-1+l1,你认为哪一个估计值更好? 3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅 的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析:假设不管 是否有假期,食堂都营业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失 无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为标准差)
3-16.考虑下列两个模型: Ⅰ、 i i i ui y = 1 + 2 x2 + 3 x3 + Ⅱ、 i i i i ui y − x = + x + x + 2 1 2 2 3 3 ( ) 要求:(1)证明: 1 ˆ ˆ 2 = 2 − , 1 1 ˆ ˆ = , 3 3 ˆ ˆ = (2)证明:残差的最小二乘估计量相同,即: ui ui ˆ = ˆ (3)在何种情况下,模型Ⅱ的拟合优度 2 R2 会小于模型Ⅰ拟合优度 2 R1 。 3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人 数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两 个可能的解释性方程: 方程 A: 1 2 5 3 125.0 15.0 1.0 1. Y ˆ = − X − X + X 0.75 2 R = 方程 B: 1 2 7 4 123.0 14.0 5.5 3. Y ˆ = − X + X − X 0.73 2 R = 其中: Y ——某天慢跑者的人数 X1——该天降雨的英寸数 X2 ——该天日照的小时数 X3 ——该天的最高温度(按华氏温度) X4 ——第二天需交学期论文的班级数 请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么? (2)为什么用相同的数据去估计相同变量的系数得到不同的符号? 3-18.对下列模型: i i i ui y = + x + 2z + (1) i i i ui y = + x − z + (2) 求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二乘估计值作比较: (3) i i i ui y = + x −z + ,你认为哪一个估计值更好? 3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅 的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析;假设不管 是否有假期,食堂都营业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失, 无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为标准差):
1=106+284X1+127X2+061Xx-59X4 0.61)(5 R=0.63n=35 要求: (1)试判定每项结果对应着哪一个变量? (2)对你的判定结论做出说明 (三)基本计算类题型 320.试对二元线性回归模型:Y=B+BX1+B2X2+l1,(i=1,2,…,n)作回归分 析,要求:(1)求出未知参数B8,B1,B2的最小二乘估计量B,B,B2 (2)求出随机误差项u的方差a2的无偏估计量 (3)对样本回归方程作拟合优度检验 (4)对总体回归方程的显著性进行F检验 (5)对B1,B2的显著性进行t检验 (6)当X0=(1,X10,x20)时,写出BY|X)和Yo的置信度为95%的预测区间 3-21.下表给出三变量模型的回归结果: 方和(SS)自由度(df)平方和的均值(MSS 来自回归 65965 来自残差 总离差(TSS 66042 要求:(1)样本容量是多少? 2)求RSS? (3)ESS和RSS的自由度各是多少? (4)求R2和R2? (5)检验假设:X2和X3对Y无影响。你用什么假设检验?为什么? (6)根据以上信息,你能否确定X2和X3各自对Y的贡献吗? 3-22.下面给出依据15个观察值计算得到的数据: y=367693,X2=402760,X3=80,∑y2=60.269 ∑x2=8485509,∑x=2800,∑Hx1=7478346
Yi X1i X2i X3i 9X4i 10.6 28.4 12.7 0.61 5. ˆ = + + + − (2.6) (6.3) (0.61) (5.9) 0.63 2 R = n = 35 要求: (1)试判定每项结果对应着哪一个变量? (2)对你的判定结论做出说明。 (三)基本计算类题型 3-20.试对二元线性回归模型: Yi = 0 + 1X1i + 2X2i + ui ,( i = 1,2, , n )作回归分 析,要求:(1)求出未知参数 0 1 2 , , 的最小二乘估计量 0 1 2 ˆ , ˆ , ˆ ; (2)求出随机误差项 u 的方差 2 的无偏估计量; (3)对样本回归方程作拟合优度检验; (4)对总体回归方程的显著性进行 F 检验; (5)对 1 2 , 的显著性进行 t 检验; (6)当 (1, , ) 0 10 20 X = X X 时,写出 E( | ) Y0 X0 和 Y0 的置信度为 95%的预测区间。 3-21.下表给出三变量模型的回归结果: 方差来源 平方和(SS) 自由度(d.f.) 平方和的均值(MSS) 来自回归 (ESS) 65965 — — 来自残差 (RSS) _— — — 总离差(TSS) 66042 14 要求:(1)样本容量是多少? (2)求 RSS? (3)ESS 和 RSS 的自由度各是多少? (4)求 2 R 和 2 R ? (5)检验假设: X2 和 X3 对 Y 无影响。你用什么假设检验?为什么? (6)根据以上信息,你能否确定 X2 和 X3 各自对 Y 的贡献吗? 3-22.下面给出依据 15 个观察值计算得到的数据: Y = 367.693 , X 2 = 402.760 , X 3 = 8.0 , 66042.269 2 yi = 84855.096 2 x2i = , 280.0 2 x3i = , yi x2i = 74778.346
∑yx=42509,∑x2x1=47960 其中小写字母代表了各值与其样本均值的离差。 要求:(1)估计三个多元回归系数; (2)估计它们的标准差:并求出R2与R2? (3)估计B2、B395%的置信区间; (4)在α=5%下,检验估计的每个回归系数的统计显著性(双边检验) (5)检验在a=5%下所有的部分系数都为零,并给出方差分析表。 3-23.考虑以下方程(括号内为估计标准差) W=8562+0364P+0.004P_1-2.560 (0.080)(0.072)(0.658) 9R2=0.873 其中:W一—t年的每位雇员的工资和薪水 P—-t年的物价水平 1年的失业率 要求:(1)对个人收入估计的斜率系数进行假设检验:(尽量在做本题之前不参考结果) (2)讨论P1在理论上的正确性,对本模型的正确性进行讨论;P1是否应从方程中 删除?为什么 3-24.下表是某种商品的需求量、价格和消费者收入十年的时间序列资料 34|56 需求量59190654506236064700674006444068000724007571070680 价格23.56244432.07324631.15|3414|35.30387039634668 收入|76200191200106700u60110012900142400159600180019300 要求:(1)已知商品需求量Y是其价格x1和消费者收入X2的函数,试求Y对X1和x2的最 小二乘回归方程:Y=B0+BX1+B2X2 (2)求Y的总变差中未被X1和K2解释的部分,并对回归方程进行显著性检验 (3)对回归参数B1,B2进行显著性t检验 3-25.参考习题228给出的数据,要求: (1)建立一个多元回归模型,解释MBA毕业生的平均初职工资,并且求出回归结果 (2)如果模型中包括了GPA和GMAT分数这两个解释变量,先验地,你可能会遇到什么 问题,为什么?
yi x3i = 4250.9 , x2i x3i = 4796.0 其中小写字母代表了各值与其样本均值的离差。 要求:(1)估计三个多元回归系数; (2)估计它们的标准差;并求出 2 R 与 2 R ? (3)估计 B2、 B3 95%的置信区间; (4)在 = 5% 下,检验估计的每个回归系数的统计显著性(双边检验); (5)检验在 = 5% 下所有的部分系数都为零,并给出方差分析表。 3-23.考虑以下方程(括号内为估计标准差): Wi Pt Pt 560Ut 8.562 0.364 0.004 2. ˆ = + + −1 − (0.080) (0.072) (0.658) n =19 0.873 2 R = 其中: W ——t 年的每位雇员的工资和薪水 P ——t 年的物价水平 U ——t 年的失业率 要求:(1)对个人收入估计的斜率系数进行假设检验;(尽量在做本题之前不参考结果) (2)讨论 Pt−1 在理论上的正确性,对本模型的正确性进行讨论; Pt−1 是否应从方程中 删除?为什么? 3-24.下表是某种商品的需求量、价格和消费者收入十年的时间序列资料: 年份 1 2 3 4 5 6 7 8 9 10 需求量 (吨) Y 59190 65450 62360 64700 67400 64440 68000 72400 75710 70680 价 格 (元) X1 23.56 24.44 32.07 32.46 31.15 34.14 35.30 38.70 39.63 46.68 收入 (元) X2 76200 91200 106700 111600 119000 129200 143400 159600 180000 193000 要求:(1)已知商品需求量 Y 是其价格 X1 和消费者收入 X2 的函数,试求 Y 对 X1 和 X2 的最 小二乘回归方程: 0 1 1 2 2 Y ˆ = ˆ + ˆ X + ˆ X (2)求 Y 的总变差中未被 X1 和 X2 解释的部分,并对回归方程进行显著性检验; (3)对回归参数 1 ˆ , 2 ˆ 进行显著性 t 检验。 3-25.参考习题 2-28 给出的数据,要求: (1)建立一个多元回归模型,解释 MBA 毕业生的平均初职工资,并且求出回归结果; (2)如果模型中包括了 GPA 和 GMAT 分数这两个解释变量,先验地,你可能会遇到什么 问题,为什么?
(3)如果学费这一变量的系数为正、并且在统计上是显著的,是否表示进入最昂贵的商业 学校是值得的。学费这个变量可用什么来代替? 3-26.经研究发现,学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水 平有关,对18名学生进行调查的统计资料如下表所示 学生购买书籍及课外|受教育年限家庭月可支配收 序号读物支出Y(元/x1(年)入x2(元/月) 171.2 174.2 294.8 93.2 660.8 1094.2 要求 (1)试求出学生购买书籍及课外读物的支出Y与受教育年限x1和家庭收入水平X2的估计 的回归方程:Y=B+B1X1+B2X2 (2)对B,B2的显著性进行t检验:计算R2和R (3)假设有一学生的受教育年限X1=10年,家庭收入水平x2=480元/月,试预测该学生全 年购买书籍及课外读物的支出,并求出相应的预测区间(a=0.05)。 3-27.根据100对(x1,y)的观察值计算出: ∑x=12∑ ∑y2 要求
(3)如果学费这一变量的系数为正、并且在统计上是显著的,是否表示进入最昂贵的商业 学校是值得的。学费这个变量可用什么来代替? 3-26.经研究发现,学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水 平有关,对 18 名学生进行调查的统计资料如下表所示: 学生 序号 购买书籍及课外 读物支出 Y (元/ 年) 受教育年限 X1 (年) 家庭月可支配收 入 X2 (元/月) 1 450.5 4 171.2 2 507.7 4 174.2 3 613.9 5 204.3 4 563.4 4 218.7 5 501.5 4 219.4 6 781.5 7 240.4 7 541.8 4 273.5 8 611.1 5 294.8 9 1222.1 10 330.2 10 793.2 7 333.1 11 660.8 5 366.0 12 792.7 6 350.9 13 580.8 4 357.9 14 612.7 5 359.0 15 890.8 7 371.9 16 1121.0 9 435.3 17 1094.2 8 523.9 18 1253.0 10 604.1 要求: (1)试求出学生购买书籍及课外读物的支出 Y 与受教育年限 X1 和家庭收入水平 X2 的估计 的回归方程: 0 1 1 2 2 Y ˆ = ˆ + ˆ X + ˆ X (2)对 1 2 , 的显著性进行 t 检验;计算 2 R 和 2 R ; (3)假设有一学生的受教育年限 X1 =10 年,家庭收入水平 X2 = 480元/月 ,试预测该学生全 年购买书籍及课外读物的支出,并求出相应的预测区间(α=0.05)。 3-27.根据 100 对( 1 x , y )的观察值计算出: 12 2 x 1 = x y = −9 30 2 y = 要求: